
1. Divergence of a product: Given that 𝜑 is a scalar field and 𝐯 a vector field, show that 

div(𝜑𝐯) = (grad𝜑) ⋅ 𝐯 +  𝜑 div 𝐯 

grad(𝜑𝐯) = (𝜑𝑣𝑖),𝑗 𝐠𝑖 ⊗ 𝐠𝑗  

= 𝜑,𝑗 𝑣𝑖𝐠𝑖 ⊗ 𝐠𝑗 +   𝜑𝑣𝑖 ,𝑗 𝐠𝑖 ⊗ 𝐠𝑗  

= 𝐯 ⊗ (grad 𝜑) +  𝜑 grad 𝐯 

Now, div(𝜑𝐯) = tr(grad(𝜑𝐯)). Taking the trace of the above, we have: 

div(𝜑𝐯) =  𝐯 ⋅ (grad 𝜑) + 𝜑 div 𝐯 

2. Show that grad(𝐮 · 𝐯) = (grad 𝐮)T𝐯 + (grad 𝐯)T𝐮 

𝐮 · 𝐯 = 𝑢𝑖𝑣𝑖 is a scalar sum of components.  

grad(𝐮 · 𝐯) = (𝑢𝑖𝑣𝑖),𝑗 𝐠𝑗  

= 𝑢𝑖 ,𝑗 𝑣𝑖𝐠𝑗 + 𝑢𝑖𝑣𝑖 ,𝑗 𝐠𝑗 

Now grad 𝐮 = 𝑢𝑖 ,𝑗 𝐠𝑖 ⊗ 𝐠𝑗  swapping the bases, we have that, 

(grad 𝐮)T = 𝑢𝑖 ,𝑗 (𝐠𝑗 ⊗ 𝐠𝑖). 

Writing 𝐯 = 𝑣𝑘𝐠𝑘, we have that, (grad 𝐮)T𝐯 = 𝑢𝑖 ,𝑗 𝑣𝑘(𝐠𝑗 ⊗ 𝐠𝑖)𝐠𝑘 =

𝑢𝑖 ,𝑗 𝑣𝑘𝐠𝑗𝛿𝑖
𝑘 = 𝑢𝑖 ,𝑗 𝑣𝑖𝐠𝑗  



It is easy to similarly show that 𝑢𝑖𝑣𝑖 ,𝑗 𝐠𝑗 = (grad 𝐯)T𝐮. Clearly, 

grad(𝐮 · 𝐯) = (𝑢𝑖𝑣𝑖),𝑗 𝐠𝑗 = 𝑢𝑖 ,𝑗 𝑣𝑖𝐠𝑗 + 𝑢𝑖𝑣𝑖 ,𝑗 𝐠𝑗  

= (grad 𝐮)T𝐯 + (grad 𝐯)T𝐮 

As required. 

3. Show that grad(𝐮 × 𝐯) = (𝐮 ×)grad 𝐯 −  (𝐯 ×)grad 𝐮 

𝐮 × 𝐯 = 𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘𝐠𝑖 

Recall that the gradient of this vector is the tensor, 

grad(𝐮 × 𝐯) = (𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘),𝑙 𝐠𝑖 ⊗ 𝐠𝑙  

= 𝜖𝑖𝑗𝑘𝑢𝑗 ,𝑙 𝑣𝑘𝐠𝑖 ⊗ 𝐠𝑙 + 𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘,𝑙 𝐠𝑖 ⊗ 𝐠𝑙 

= −𝜖𝑖𝑘𝑗𝑢𝑗 ,𝑙 𝑣𝑘𝐠𝑖 ⊗ 𝐠𝑙 + 𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘,𝑙 𝐠𝑖 ⊗ 𝐠𝑙 

= − (𝐯 ×)grad 𝐮 + (𝐮 ×)grad 𝐯 

4. Show that div (𝐮 × 𝐯) = 𝐯 ⋅ curl 𝐮 − 𝐮 ⋅ curl 𝐯 

We already have the expression for grad(𝐮 × 𝐯) above; remember that  

div (𝐮 × 𝐯) = tr[grad(𝐮 × 𝐯)] 

= −𝜖𝑖𝑘𝑗𝑢𝑗 ,𝑙 𝑣𝑘𝐠𝑖 ⋅ 𝐠𝑙 + 𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘,𝑙 𝐠𝑖 ⋅ 𝐠𝑙  



= −𝜖𝑖𝑘𝑗𝑢𝑗 ,𝑙 𝑣𝑘𝛿𝑖
𝑙 + 𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘,𝑙 𝛿𝑖

𝑙 

= −𝜖𝑖𝑘𝑗𝑢𝑗 ,𝑖 𝑣𝑘 + 𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘,𝑖 = 𝐯 ⋅ curl 𝐮 − 𝐮 ⋅ curl 𝐯 

5. Given a scalar point function 𝜙 and a vector field 𝐯, show that curl (𝜙𝐯) = 𝜙 curl 𝐯 +

(grad 𝜙) × 𝐯. 

curl (𝜙𝐯) = 𝜖𝑖𝑗𝑘(𝜙𝑣𝑘),𝑗 𝐠𝑖 

= 𝜖𝑖𝑗𝑘(𝜙,𝑗 𝑣𝑘 + 𝜙𝑣𝑘 ,𝑗 )𝐠𝑖 

= 𝜖𝑖𝑗𝑘𝜙,𝑗 𝑣𝑘𝐠𝑖 + 𝜖𝑖𝑗𝑘𝜙𝑣𝑘 ,𝑗 𝐠𝑖  

= (∇𝜙) × 𝐯 + 𝜙 curl 𝐯 

6. Show that div (𝐮 ⊗ 𝐯) = (div 𝐯)𝐮 + (grad 𝐮)𝐯 

𝐮 ⊗ 𝐯 is the tensor, 𝑢𝑖𝑣𝑗𝐠𝑖 ⊗ 𝐠𝑗. The gradient of this is the third order tensor, 

grad (𝐮 ⊗ 𝐯) = (𝑢𝑖𝑣𝑗),𝑘 𝐠𝑖 ⊗ 𝐠𝑗 ⊗ 𝐠𝑘 

And by divergence, we mean the contraction of the last basis vector: 

div (𝐮 ⊗ 𝐯) = (𝑢𝑖𝑣𝑗),𝑘 (𝐠𝑖 ⊗ 𝐠𝑗)𝐠𝑘 

= (𝑢𝑖𝑣𝑗),𝑘 𝐠𝑖𝛿𝑗
𝑘 = (𝑢𝑖𝑣𝑗),𝑗 𝐠𝑖 

= 𝑢𝑖 ,𝑗 𝑣𝑗𝐠𝑖 + 𝑢𝑖𝑣𝑗 ,𝑗 𝐠𝑖 



= (grad 𝐮)𝐯 + (div 𝐯)𝐮 

7. For a scalar field 𝜙 and a tensor field 𝐓 show that grad (𝜙𝐓) = 𝜙grad 𝐓 + 𝐓 ⊗

grad𝜙. Also show that div (𝜙𝐓) = 𝜙 div 𝐓 + 𝐓grad𝜙 

grad(𝜙𝐓) = (𝜙𝑇𝑖𝑗),𝑘 𝐠𝑖 ⊗ 𝐠𝑗 ⊗ 𝐠𝑘 

= (𝜙,𝑘 𝑇𝑖𝑗 + 𝜙𝑇𝑖𝑗 ,𝑘 )𝐠𝑖 ⊗ 𝐠𝑗 ⊗ 𝐠𝑘 

= 𝐓 ⊗ grad𝜙 +  𝜙grad 𝐓 

Furthermore, we can contract the last two bases and obtain, 

div(𝜙𝐓) = (𝜙,𝑘 𝑇𝑖𝑗 + 𝜙𝑇𝑖𝑗 ,𝑘 )𝐠𝑖 ⊗ 𝐠𝑗 ⋅ 𝐠𝑘 

= (𝜙,𝑘 𝑇𝑖𝑗 + 𝜙𝑇𝑖𝑗 ,𝑘 )𝐠𝑖𝛿𝑗
𝑘 

= 𝑇𝑖𝑘  𝜙,𝑘 𝐠𝑖 +  𝜙𝑇𝑖𝑘 ,𝑘 𝐠𝑖  

= 𝐓grad𝜙 +  𝜙 div 𝐓 

 

8. For two arbitrary vectors, 𝐮 and 𝐯, show that grad(𝐮 × 𝐯) = (𝐮 ×)grad𝐯 −

(𝐯 ×)grad𝐮 

grad(𝐮 × 𝐯) = (𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘),𝑙 𝐠𝑖 ⊗ 𝐠𝑙 



= (𝜖𝑖𝑗𝑘𝑢𝑗 ,𝑙 𝑣𝑘 + 𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘,𝑙 )𝐠𝑖 ⊗ 𝐠𝑙 

= (𝑢𝑗 ,𝑙 𝜖𝑖𝑗𝑘𝑣𝑘 + 𝑣𝑘,𝑙 𝜖𝑖𝑗𝑘𝑢𝑗)𝐠𝑖 ⊗ 𝐠𝑙 

= −(𝐯 ×)grad𝐮 +  (𝐮 ×)grad𝐯 

9. For a vector field 𝐮, show that grad(𝐮 ×) is a third ranked tensor. Hence or otherwise 

show that div(𝐮 ×) = −curl 𝐮. 

The second–order tensor (𝐮 ×) is defined as 𝜖𝑖𝑗𝑘𝑢𝑗𝐠𝑖 ⊗ 𝐠𝑘. Taking the covariant 

derivative with an independent base, we have 

grad(𝐮 ×) = 𝜖𝑖𝑗𝑘𝑢𝑗 ,𝑙 𝐠𝑖 ⊗ 𝐠𝑘 ⊗ 𝐠𝑙 

This gives a third order tensor as we have seen. Contracting on the last two bases,  

div(𝐮 ×) = 𝜖𝑖𝑗𝑘𝑢𝑗 ,𝑙 𝐠𝑖 ⊗ 𝐠𝑘 ⋅ 𝐠𝑙 

= 𝜖𝑖𝑗𝑘𝑢𝑗 ,𝑙 𝐠𝑖𝛿𝑘
𝑙  

= 𝜖𝑖𝑗𝑘𝑢𝑗 ,𝑘 𝐠𝑖 

= −curl 𝐮 

10. Show that div (𝜙𝟏) = grad 𝜙 

Note that 𝜙𝟏 = (𝜙𝑔𝛼𝛽)𝐠𝛼 ⊗ 𝐠𝛽. Also note that  



grad 𝜙𝟏 = (𝜙𝑔𝛼𝛽),𝑖 𝐠𝛼 ⊗ 𝐠𝛽 ⊗ 𝐠𝑖   

The divergence of this third order tensor is the contraction of the last two bases: 

div (𝜙𝟏) = tr(grad 𝜙𝟏) = (𝜙𝑔𝛼𝛽),𝑖 (𝐠𝛼 ⊗ 𝐠𝛽)𝐠𝑖 = (𝜙𝑔𝛼𝛽),𝑖 𝐠𝛼𝑔𝛽𝑖  

= 𝜙,𝑖 𝑔𝛼𝛽𝑔𝛽𝑖𝐠𝛼  

=  𝜙,𝑖 𝛿𝛼
𝑖 𝐠𝛼 =  𝜙,𝑖 𝐠𝑖 = grad 𝜙 

11. Show that curl (𝜙𝟏) = ( grad 𝜙) × 

Note that 𝜙𝟏 = (𝜙𝑔𝛼𝛽)𝐠𝛼 ⊗ 𝐠𝛽, and that curl 𝑻 = 𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗  𝐠𝑖 ⊗ 𝐠𝛼 so that, 

curl (𝜙𝟏) = 𝜖𝑖𝑗𝑘(𝜙𝑔𝛼𝑘),𝑗 𝐠𝑖 ⊗ 𝐠𝛼  

= 𝜖𝑖𝑗𝑘(𝜙,𝑗 𝑔𝛼𝑘)𝐠𝑖 ⊗ 𝐠𝛼 = 𝜖𝑖𝑗𝑘𝜙,𝑗 𝐠𝑖 ⊗ 𝐠𝑘 

= ( grad 𝜙) × 

12. Show that curl (𝐯 ×) =  (div 𝐯)𝟏 −  grad 𝐯 

(𝐯 ×) = 𝜖𝛼𝛽𝑘𝑣𝛽 𝐠𝛼 ⊗ 𝐠𝑘 

curl 𝑻 = 𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗  𝐠𝑖 ⊗ 𝐠𝛼 

so that  

curl (𝐯 ×) = 𝜖𝑖𝑗𝑘𝜖𝛼𝛽𝑘𝑣𝛽,𝑗  𝐠𝑖 ⊗ 𝐠𝛼 



= (𝑔𝑖𝛼𝑔𝑗𝛽 − 𝑔𝑖𝛽𝑔𝑗𝛼) 𝑣𝛽,𝑗  𝐠𝑖 ⊗ 𝐠𝛼 

= 𝑣𝑗 ,𝑗 𝐠𝛼 ⊗ 𝐠𝛼 − 𝑣𝑖 ,𝑗 𝐠𝑖 ⊗ 𝐠𝑗  

= (div 𝐯)𝟏 −  grad 𝐯 

13. Show that div (𝐮 × 𝐯) = 𝐯 ⋅ curl 𝐮 − 𝐮 ⋅ curl 𝐯 

div (𝐮 × 𝐯) = (𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘),𝑖 

Noting that the tensor 𝜖𝑖𝑗𝑘 behaves as a constant under a covariant 

differentiation, we can write, 

div (𝐮 × 𝐯) = (𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘),𝑖  

= 𝜖𝑖𝑗𝑘𝑢𝑗 ,𝑖 𝑣𝑘 + 𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘,𝑖  

= 𝐯 ⋅ curl 𝐮 − 𝐮 ⋅ curl 𝐯 

14. Given a scalar point function 𝜙 and a vector field 𝐯, show that curl (𝜙𝐯) =

𝜙 curl 𝐯 + (∇𝜙) × 𝐯. 

curl (𝜙𝐯) = 𝜖𝑖𝑗𝑘(𝜙𝑣𝑘),𝑗 𝐠𝑖 

= 𝜖𝑖𝑗𝑘(𝜙,𝑗 𝑣𝑘 + 𝜙𝑣𝑘 ,𝑗 )𝐠𝑖 

= 𝜖𝑖𝑗𝑘𝜙,𝑗 𝑣𝑘𝐠𝑖 + 𝜖𝑖𝑗𝑘𝜙𝑣𝑘 ,𝑗 𝐠𝑖  



= (∇𝜙) × 𝐯 + 𝜙 curl 𝐯 

15. Show that curl (grad 𝜙) = 𝐨 

For any tensor 𝐯 = 𝑣𝛼𝐠𝛼 

curl 𝐯 = 𝜖𝑖𝑗𝑘𝑣𝑘,𝑗  𝐠𝑖 

Let 𝐯 =  grad 𝜙. Clearly, in this case, 𝑣𝑘 = 𝜙,𝑘 so that 𝑣𝑘,𝑗 = 𝜙,𝑘𝑗. It therefore 

follows that, 

curl (grad 𝜙) = 𝜖𝑖𝑗𝑘𝜙,𝑘𝑗 𝐠𝑖 = 𝟎. 

The contraction of symmetric tensors with unsymmetric led to this conclusion. 

Note that this presupposes that the order of differentiation in the scalar field is 

immaterial. This will be true only if the scalar field is continuous – a proposition 

we have assumed in the above. 

 

16. Show that curl (grad 𝐯) = 𝟎 

For any tensor 𝐓 = T𝛼𝛽𝐠𝛼 ⊗ 𝐠𝛽 

curl 𝐓 = 𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗  𝐠𝑖 ⊗ 𝐠𝛼 



Let 𝐓 =  grad 𝐯. Clearly, in this case, T𝛼𝛽 = 𝑣𝛼,𝛽 so that 𝑇𝛼𝑘 ,𝑗 = 𝑣𝛼,𝑘𝑗 . It 

therefore follows that, 

curl (grad 𝐯) = 𝜖𝑖𝑗𝑘𝑣𝛼,𝑘𝑗 𝐠𝑖 ⊗ 𝐠𝛼 = 𝟎. 

The contraction of symmetric tensors with unsymmetric led to this conclusion. 

Note that this presupposes that the order of differentiation in the vector field is 

immaterial. This will be true only if the vector field is continuous – a proposition 

we have assumed in the above. 

17. Show that curl (grad 𝐯)T = grad(curl 𝐯) 

From previous derivation, we can see that, curl 𝐓 = 𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗  𝐠𝑖 ⊗ 𝐠𝛼. Clearly,  

curl 𝐓T = 𝜖𝑖𝑗𝑘𝑇𝑘𝛼 ,𝑗  𝐠𝑖 ⊗ 𝐠𝛼 

so that curl (grad 𝐯)T = 𝜖𝑖𝑗𝑘𝑣𝑘,𝛼𝑗 𝐠𝑖 ⊗ 𝐠𝛼. But curl 𝐯 = 𝜖𝑖𝑗𝑘𝑣𝑘,𝑗  𝐠𝑖. The 

gradient of this is, 

grad(curl 𝐯) = (𝜖𝑖𝑗𝑘𝑣𝑘,𝑗 ),𝛼 𝐠𝑖 ⊗ 𝐠𝛼 = 𝜖𝑖𝑗𝑘𝑣𝑘 ,𝑗𝛼 𝐠𝑖 ⊗ 𝐠𝛼 = curl (grad 𝐯)T 

18. Show that div (grad 𝜙 × grad θ) = 0 

grad 𝜙 × grad θ = 𝜖𝑖𝑗𝑘𝜙,𝑗 𝜃,𝑘 𝐠𝑖 



The gradient of this vector is the tensor, 

grad(grad 𝜙 × grad 𝜃) = (𝜖𝑖𝑗𝑘𝜙,𝑗 𝜃,𝑘 ),𝑙 𝐠𝑖 ⊗ 𝐠𝑙

= 𝜖𝑖𝑗𝑘𝜙,𝑗𝑙 𝜃,𝑘 𝐠𝑖 ⊗ 𝐠𝑙 + 𝜖𝑖𝑗𝑘𝜙,𝑗 𝜃,𝑘𝑙 𝐠𝑖 ⊗ 𝐠𝑙 

The trace of the above result is the divergence we are seeking: 

div (grad 𝜙 × grad θ) = tr[grad(grad 𝜙 × grad 𝜃)]

= 𝜖𝑖𝑗𝑘𝜙,𝑗𝑙 𝜃,𝑘 𝐠𝑖 ⋅ 𝐠𝑙 + 𝜖𝑖𝑗𝑘𝜙,𝑗 𝜃,𝑘𝑙 𝐠𝑖 ⋅ 𝐠𝑙

= 𝜖𝑖𝑗𝑘𝜙,𝑗𝑙 𝜃,𝑘 𝛿𝑖
𝑙 + 𝜖𝑖𝑗𝑘𝜙,𝑗 𝜃,𝑘𝑙 𝛿𝑖

𝑙 

= 𝜖𝑖𝑗𝑘𝜙,𝑗𝑖 𝜃,𝑘+ 𝜖𝑖𝑗𝑘𝜙,𝑗 𝜃,𝑘𝑖 = 0 

Each term vanishing on account of the contraction of a symmetric tensor with an 

antisymmetric. 

19. Show that curl curl 𝐯 = grad(div 𝐯) − grad2𝐯 

Let 𝐰 = curl 𝐯 ≡ 𝜖𝑖𝑗𝑘𝑣𝑘,𝑗 𝐠𝑖. But curl 𝐰 ≡ 𝜖𝛼𝛽𝛾𝑤𝛾 ,𝛽 𝐠𝛼. Upon inspection, we 

find that 𝑤𝛾 = 𝑔𝛾𝑖𝜖𝑖𝑗𝑘𝑣𝑘,𝑗  so that  

curl 𝐰 ≡ 𝜖𝛼𝛽𝛾(𝑔𝛾𝑖𝜖𝑖𝑗𝑘𝑣𝑘,𝑗 ),𝛽 𝐠𝛼 = 𝑔𝛾𝑖𝜖𝛼𝛽𝛾𝜖𝑖𝑗𝑘𝑣𝑘 ,𝑗𝛽 𝐠𝛼 



Now, it can be shown (see #20 below) that 𝑔𝛾𝑖𝜖𝛼𝛽𝛾𝜖𝑖𝑗𝑘 = 𝑔𝛼𝑗𝑔𝛽𝑘 − 𝑔𝛼𝑘𝑔𝛽𝑗  so 

that, 

curl 𝐰 = (𝑔𝛼𝑗𝑔𝛽𝑘 − 𝑔𝛼𝑘𝑔𝛽𝑗)𝑣𝑘,𝑗𝛽 𝐠𝛼 

= 𝑣𝛽 ,𝑗𝛽 𝐠𝑗 − 𝑔𝛽𝑗𝑣𝛼 ,𝑗𝛽 𝐠𝛼 

= grad(div 𝐯) − grad2𝐯 

Also recall that the Laplacian (grad2) of a scalar field 𝜙 is, grad2𝜙 = 𝑔𝑖𝑗𝜙,𝑖𝑗 . In 

Cartesian coordinates, this becomes,  

grad2𝜙 = 𝑔𝑖𝑗𝜙,𝑖𝑗 = 𝛿𝑖𝑗  𝜙,𝑖𝑗 =  𝜙,𝑖𝑖 

as the unit (metric) tensor now degenerates to the Kronecker delta in this special 

case. For a vector field, grad2𝐯 = 𝑔𝛽𝑗𝑣𝛼 ,𝑗𝛽 𝐠𝛼.  

Also note that while grad is a vector operator, the Laplacian (grad2) is a scalar 

operator. 

20. Show that 𝑔𝛾𝑖𝜖𝛼𝛽𝛾𝜖𝑖𝑗𝑘 = 𝑔𝛼𝑗𝑔𝛽𝑘 − 𝑔𝛼𝑘𝑔𝛽𝑗 

Note that  



𝑔𝛾𝑖𝜖𝛼𝛽𝛾𝜖𝑖𝑗𝑘 = 𝑔𝛾𝑖 |

𝑔𝑖𝛼 𝑔𝑖𝛽 𝑔𝑖𝛾

𝑔𝑗𝛼 𝑔𝑗𝛽 𝑔𝑗𝛾

𝑔𝑘𝛼 𝑔𝑘𝛽 𝑔𝑘𝛾

| = |

𝑔𝛾𝑖𝑔𝑖𝛼 𝑔𝛾𝑖𝑔𝑖𝛽 𝑔𝛾𝑖𝑔𝑖𝛾

𝑔𝑗𝛼 𝑔𝑗𝛽 𝑔𝑗𝛾

𝑔𝑘𝛼 𝑔𝑘𝛽 𝑔𝑘𝛾

|

= |

𝛿𝛾
𝛼 𝛿𝛾

𝛽
𝛿𝛾

𝛾

𝑔𝑗𝛼 𝑔𝑗𝛽 𝑔𝑗𝛾

𝑔𝑘𝛼 𝑔𝑘𝛽 𝑔𝑘𝛾

| 

= 𝛿𝛾
𝛼 |

𝑔𝑗𝛽 𝑔𝑗𝛾

𝑔𝑘𝛽 𝑔𝑘𝛾
| − 𝛿𝛾

𝛽
|
𝑔𝑗𝛼 𝑔𝑗𝛾

𝑔𝑘𝛼 𝑔𝑘𝛾| + 𝛿𝛾
𝛾

|
𝑔𝑗𝛼 𝑔𝑗𝛽

𝑔𝑘𝛼 𝑔𝑘𝛽
|

= |
𝑔𝑗𝛽 𝑔𝑗𝛼

𝑔𝑘𝛽 𝑔𝑘𝛼
| − |

𝑔𝑗𝛼 𝑔𝑗𝛽

𝑔𝑘𝛼 𝑔𝑘𝛽
| + 3 |

𝑔𝑗𝛼 𝑔𝑗𝛽

𝑔𝑘𝛼 𝑔𝑘𝛽
| = |

𝑔𝑗𝛼 𝑔𝑗𝛽

𝑔𝑘𝛼 𝑔𝑘𝛽
| 

= 𝑔𝛼𝑗𝑔𝛽𝑘 − 𝑔𝛼𝑘𝑔𝛽𝑗 

21. Given that 𝜑(𝑡) = |𝐀(𝑡)|, Show that �̇�(𝑡) =
𝐀

|𝐀(𝑡)|
: �̇� 

𝜑2 ≡ 𝐀: 𝐀 

Now, 

𝑑

𝑑𝑡
(𝜑2) = 2𝜑

𝑑𝜑

𝑑𝑡
=  

𝑑𝐀

𝑑𝑡
: 𝐀 + 𝐀:

𝑑𝐀

𝑑𝑡
= 2𝐀:

𝑑𝐀

𝑑𝑡
 



as inner product is commutative. We can therefore write that  

𝑑𝜑

𝑑𝑡
=

𝐀

𝜑
:
𝑑𝐀

𝑑𝑡
=

𝐀

|𝐀(𝑡)|
: �̇� 

as required. 

22. Given a tensor field 𝐓, obtain the vector 𝐰 ≡ 𝐓T𝐯 and show that its divergence 

is 𝐓: (∇𝐯) + 𝐯 ⋅ div 𝐓 

The gradient of 𝐰 is the tensor , (𝑇𝑗𝑖𝑣𝑗),𝑘 𝐠𝑖 ⊗ 𝐠𝑘. Therefore, divergence of 𝒘 

(the trace of the gradient) is the scalar sum , 𝑇𝑗𝑖𝑣𝑗 ,𝑘 𝑔𝑖𝑘 + 𝑇𝑗𝑖 ,𝑘 𝑣𝑗𝑔𝑖𝑘. Expanding, 

we obtain, 

div (𝐓T𝐯) = 𝑇𝑗𝑖𝑣𝑗 ,𝑘 𝑔𝑖𝑘 + 𝑇𝑗𝑖 ,𝑘 𝑣𝑗𝑔𝑖𝑘 

= 𝑇𝑗
𝑘 ,𝑘 𝑣𝑗 + 𝑇𝑗

𝑘𝑣𝑗 ,𝑘 

= (div 𝐓) ⋅ 𝐯 + tr(𝐓Tgrad 𝐯) 

= (div 𝐓) ⋅ 𝐯 + 𝐓: (grad 𝐯) 

Recall that scalar product of two vectors is commutative so that  

div (𝐓T𝐯) =  𝐓: (grad 𝐯) + 𝐯 ⋅ div 𝐓 



23. For a second-order tensor 𝐓 define curl 𝐓 ≡ 𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗  𝐠𝑖 ⊗ 𝐠𝛼 show that for 

any constant vector 𝒂, (curl 𝐓) 𝒂 = curl (𝐓T𝒂)  

Express vector 𝒂 in the invariant form with covariant components as 𝒂 = 𝑎𝛽𝐠𝛽. 

It follows that   

(curl 𝐓) 𝒂 = 𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗  (𝐠𝑖 ⊗ 𝐠𝛼)𝒂 

= 𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗  𝑎𝛽(𝐠𝑖 ⊗ 𝐠𝛼)𝐠𝛽  

= 𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗  𝑎𝛽𝐠𝑖𝛿𝛽
𝛼 

= 𝜖𝑖𝑗𝑘(𝑇𝛼𝑘),𝑗  𝐠𝑖𝑎𝛼 

= 𝜖𝑖𝑗𝑘(𝑇𝛼𝑘𝑎𝛼),𝑗  𝐠𝑖 

The last equality resulting from the fact that vector 𝒂 is a constant vector. Clearly, 

(curl 𝐓) 𝒂 = curl (𝐓T𝒂) 

24. For any two vectors 𝐮 and 𝐯, show that curl (𝐮 ⊗ 𝐯) = [(grad 𝐮)𝐯 ×]𝑇 +

 (curl 𝐯) ⊗ 𝒖 where 𝐯 × is the skew tensor 𝜖𝑖𝑘𝑗𝑣𝑘 𝐠𝑖 ⊗ 𝐠𝑗. 

Recall that the curl of a tensor 𝑻 is defined by curl 𝑻 ≡ 𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗  𝐠𝑖 ⊗ 𝐠𝛼. 

Clearly therefore,  



curl (𝒖 ⊗ 𝒗) = 𝜖𝑖𝑗𝑘(𝑢𝛼𝑣𝑘),𝑗  𝐠𝑖 ⊗ 𝐠𝛼 = 𝜖𝑖𝑗𝑘(𝑢𝛼,𝑗 𝑣𝑘 + 𝑢𝛼𝑣𝑘,𝑗 ) 𝐠𝑖 ⊗ 𝐠𝛼

= 𝜖𝑖𝑗𝑘𝑢𝛼,𝑗 𝑣𝑘 𝐠𝑖 ⊗ 𝐠𝛼 + 𝜖𝑖𝑗𝑘𝑢𝛼𝑣𝑘,𝑗  𝐠𝑖 ⊗ 𝐠𝛼

= (𝜖𝑖𝑗𝑘𝑣𝑘 𝐠𝑖) ⊗ (𝑢𝛼 ,𝑗 𝐠𝛼) + (𝜖𝑖𝑗𝑘𝑣𝑘,𝑗  𝐠𝑖) ⊗ (𝑢𝛼𝐠𝛼)

= (𝜖𝑖𝑗𝑘𝑣𝑘 𝐠𝑖 ⊗ 𝐠𝑗)(𝑢𝛼 ,𝛽 𝐠𝛽 ⊗ 𝐠𝛼) + (𝜖𝑖𝑗𝑘𝑣𝑘 ,𝑗  𝐠𝑖) ⊗ (𝑢𝛼𝐠𝛼)

= −(𝐯 ×)(grad 𝐮)𝑻 +  (curl 𝐯) ⊗ 𝐮 = [(grad 𝐮)𝐯 ×]𝑻 + (curl 𝐯) ⊗ 𝐮 

upon noting that the vector cross is a skew tensor. 

25. Show that curl (𝐮 × 𝐯) = div(𝐮 ⊗ 𝐯 − 𝐯 ⊗ 𝐮) 

The vector 𝐰 ≡ 𝐮 × 𝐯 = 𝑤𝒌𝐠𝑘 = 𝜖𝑘𝛼𝛽𝑢𝛼𝑣𝛽𝐠𝑘 and curl 𝐰 = 𝝐𝑖𝑗𝑘𝑤𝑘,𝑗 𝐠𝑖. 

Therefore,  

curl (𝐮 × 𝐯) = 𝝐𝒊𝒋𝒌𝑤𝑘 ,𝑗 𝐠𝑖  

= 𝝐𝒊𝒋𝒌𝜖𝑘𝛼𝛽(𝑢𝛼𝑣𝛽),𝑗 𝐠𝑖 

= (𝛿𝛼
𝑖 𝛿𝛽

𝑗
− 𝛿𝛽

𝑖 𝛿𝛼
𝑗
) (𝑢𝛼𝑣𝛽),𝑗 𝐠𝑖 

= (𝛿𝛼
𝑖 𝛿𝛽

𝑗
− 𝛿𝛽

𝑖 𝛿𝛼
𝑗
) (𝑢𝛼 ,𝑗 𝑣𝛽 + 𝑢𝛼𝑣𝛽 ,𝑗 )𝐠𝑖 

= [𝑢𝑖 ,𝑗 𝑣𝑗 + 𝑢𝑖𝑣𝑗 ,𝑗− (𝑢𝑗 ,𝑗 𝑣𝑖 + 𝑢𝑗𝑣𝑖 ,𝑗 )]𝐠𝑖 

= [(𝑢𝑖𝑣𝑗),𝑗− (𝑢𝑗𝑣𝑖),𝑗 ]𝐠𝑖 



= div(𝐮 ⊗ 𝐯 − 𝐯 ⊗ 𝐮) 

since div(𝐮 ⊗ 𝐯) = (𝑢𝑖𝑣𝑗),𝛼 𝐠𝑖 ⊗ 𝐠𝑗 ⋅ 𝐠𝛼 = (𝑢𝑖𝑣𝑗),𝑗 𝐠𝑖. 

26. Given a scalar point function 𝜙 and a second-order tensor field 𝐓, show that 

curl (𝜙𝐓) = 𝜙 curl 𝐓 + ((∇𝜙) ×)𝐓T where [(∇𝜙) ×] is the skew tensor 

𝜖𝑖𝑗𝑘𝜙,𝑗 𝐠𝑖 ⊗ 𝐠𝑘 

curl (𝜙𝑻) ≡ 𝜖𝑖𝑗𝑘(𝜙𝑇𝛼𝑘),𝑗  𝐠𝑖 ⊗ 𝐠𝛼 

= 𝜖𝑖𝑗𝑘(𝜙,𝑗 𝑇𝛼𝑘 + 𝜙𝑇𝛼𝑘 ,𝑗 ) 𝐠𝑖 ⊗ 𝐠𝛼 

= 𝜖𝑖𝑗𝑘𝜙,𝑗 𝑇𝛼𝑘 𝐠𝑖 ⊗ 𝐠𝛼 + 𝜙𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗  𝐠𝑖 ⊗ 𝐠𝛼 

= (𝜖𝑖𝑗𝑘𝜙,𝑗 𝐠𝑖 ⊗ 𝐠𝑘) (𝑇𝛼𝛽𝐠𝛽 ⊗ 𝐠𝛼) + 𝜙𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗  𝐠𝑖 ⊗ 𝐠𝛼  

= 𝜙 curl 𝐓 + ((∇𝜙) ×)𝐓T 

27. For a second-order tensor field 𝑻, show that div(curl 𝐓) = curl(div 𝐓T) 

Define the second order tensor 𝑆 as  

curl 𝐓 ≡ 𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗  𝐠𝑖 ⊗ 𝐠𝛼 = 𝑆.𝛼
𝑖 𝐠𝑖 ⊗ 𝐠𝛼 

The gradient of 𝑺 is 𝑆.𝛼
𝑖 ,𝛽 𝐠𝑖 ⊗ 𝐠𝛼 ⊗ 𝐠𝛽 = 𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗𝛽  𝐠𝑖 ⊗ 𝐠𝛼 ⊗ 𝐠𝛽 

Clearly,  



div(curl 𝑻) = 𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗𝛽  𝐠𝑖 ⊗ 𝐠𝛼 ⋅ 𝐠𝛽 = 𝜖𝑖𝑗𝑘𝑇𝛼𝑘 ,𝑗𝛽  𝐠𝑖  𝑔𝛼𝛽 

= 𝜖𝑖𝑗𝑘𝑇𝛽
𝑘 ,𝑗𝛽  𝐠𝑖 = curl(div 𝐓T) 

28. Show that if 𝜑 defined in the space spanned by orthonormal coordinates 𝑥𝑖, then 

∇2(𝑥𝑖𝜑) = 2
𝜕𝜑

𝜕𝑥𝑖 + 𝑥𝑖∇2𝜑 . 

By definition, ∇2(𝑥𝑖𝜑) = 𝑔𝑗𝑘(𝑥𝑖𝜑)
,𝑗𝑘

 . Expanding, we have 

𝑔𝑗𝑘(𝑥𝑖𝜑)
,𝑗𝑘

= 𝑔𝑗𝑘(𝑥𝑖
,𝑗𝜑 + 𝑥𝑖𝜑,𝑗)

,𝑘
= 𝑔𝑗𝑘(𝛿𝑗

𝑖𝜑 + 𝑥𝑖𝜑,𝑗)
,𝑘

 

= 𝑔𝑗𝑘(𝛿𝑗
𝑖𝜑,𝑘 + 𝑥𝑖

,𝑘𝜑,𝑗 + 𝑥𝑖𝜑,𝑗𝑘) 

= 𝑔𝑗𝑘(𝛿𝑗
𝑖𝜑,𝑘 + 𝛿𝑘

𝑖 𝜑,𝑗 + 𝑥𝑖𝜑,𝑗𝑘) 

= 𝑔𝑖𝑘𝜑,𝑘 + 𝑔𝑖𝑗𝜑,𝑗 + 𝑥𝑖𝑔𝑗𝑘𝜑,𝑗𝑘 

When the coordinates are orthonormal, this becomes, 

2

(ℎ𝑖)2

𝜕Φ

𝜕𝑥𝑖
+ 𝑥𝑖∇2Φ 

where we have suspended the summation rule and ℎ𝑖 is the square root of the 

appropriate metric tensor component. 



29. In Cartesian coordinates, If the volume 𝑉 is enclosed by the surface 𝑆, the 

position vector 𝒓 = 𝑥𝑖𝐠𝑖 and 𝒏 is the external unit normal to each surface element, 

show that 
1

6
∫ ∇(𝒓 ⋅ 𝒓) ⋅ 𝒏𝑑𝑆

𝑆
 equals the volume contained in 𝑉. 

𝒓 ⋅ 𝒓 = 𝑥𝑖𝑥𝑗𝐠𝑖 ⋅ 𝐠𝑗 = 𝑥𝑖𝑥𝑗𝑔𝑖𝑗 

By the Divergence Theorem,  

∫∇(𝒓 ⋅ 𝒓) ⋅ 𝒏𝑑𝑆
𝑆

= ∫ ∇ ⋅ [∇(𝒓 ⋅ 𝒓)]𝑑𝑉
𝑉

= ∫ 𝜕𝑙[𝜕𝑘(𝑥𝑖𝑥𝑗𝑔𝑖𝑗)] 𝐠𝑙 ⋅  𝐠𝑘 𝑑𝑉
𝑉

= ∫ 𝜕𝑙[𝑔𝑖𝑗(𝑥𝑖 ,𝑘 𝑥𝑗 + 𝑥𝑖𝑥𝑗 ,𝑘 )] 𝐠𝑙 ⋅  𝐠𝑘 𝑑𝑉
𝑉

= ∫ 𝑔𝑖𝑗𝑔𝑙𝑘(𝛿𝑘
𝑖 𝑥𝑗 + 𝑥𝑖𝛿𝑘

𝑗
),𝑙  𝑑𝑉

𝑉

= ∫ 2𝑔𝑖𝑘𝑔𝑙𝑘𝑥𝑖 ,𝑙  𝑑𝑉
𝑉

= ∫ 2𝛿𝑖
𝑙𝛿𝑙

𝑖  𝑑𝑉
𝑉

= 6 ∫  𝑑𝑉
𝑉

 

30. For any Euclidean coordinate system, show that div 𝐮 × 𝐯 = 𝐯 curl 𝐮 − 𝐮 curl 𝐯 

Given the contravariant vector 𝑢𝑖 and 𝑣𝑖 with their associated vectors 𝑢𝑖 and 𝑣𝑖, 

the contravariant component of the above cross product is 𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘 .The 



required divergence is simply the contraction of the covariant 𝑥𝑖 derivative of this 

quantity: 

(𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘)
,𝑖

= 𝜖𝑖𝑗𝑘𝑢𝑗,𝑖𝑣𝑘 + 𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘,𝑖 

where we have treated the tensor 휀𝑖𝑗𝑘 as a constant under the covariant 

derivative.  

Cyclically rearranging the RHS we obtain, 

(𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘)
,𝑖

= 𝑣𝑘𝜖𝑘𝑖𝑗𝑢𝑗,𝑖 + 𝑢𝑗𝜖𝑗𝑘𝑖𝑣𝑘,𝑖 = 𝑣𝑘𝜖𝑘𝑖𝑗𝑢𝑗,𝑖 + 𝑢𝑗𝜖𝑗𝑖𝑘𝑣𝑘,𝑖 

where we have used the anti-symmetric property of the tensor 𝜖𝑖𝑗𝑘. The last 

expression shows clearly that 

div 𝐮 × 𝐯 = 𝐯 curl 𝐮 − 𝐮 curl 𝐯 

as required. 

31. For a general tensor field 𝑻 show that, curl(curl 𝑻)  = [∇2(tr 𝑻) −

div(div 𝑻)]𝑰 +  grad(div 𝑻) +  (grad(div 𝑻))
T

−  grad(grad (tr𝑻)) − ∇2𝑻T 

curl 𝑻 = 𝝐𝛼𝑠𝑡𝑇𝛽𝑡 ,𝑠 𝐠𝛼 ⊗ 𝐠𝛽  

= 𝑆 .𝛽
𝛼 𝐠𝛼 ⊗ 𝐠𝛽 



curl 𝑺 = 𝜖𝑖𝑗𝑘𝑆 .𝑘
𝛼 ,𝑗 𝐠𝑖 ⊗ 𝐠𝛼 

so that  

curl 𝑺 = curl(curl 𝑻)  = 𝜖𝑖𝑗𝑘𝜖𝛼𝑠𝑡𝑇𝑘𝑡 ,𝑠𝑗 𝐠𝑖 ⊗ 𝐠𝛼 

= |

𝑔𝑖𝛼 𝑔𝑖𝑠 𝑔𝑖𝑡

𝑔𝑗𝛼 𝑔𝑗𝑠 𝑔𝑗𝑡

𝑔𝑘𝛼 𝑔𝑘𝑠 𝑔𝑘𝑡

| 𝑇𝑘𝑡 ,𝑠𝑗 𝐠𝑖 ⊗ 𝐠𝛼 

= [
𝑔𝑖𝛼(𝑔𝑗𝑠𝑔𝑘𝑡 − 𝑔𝑗𝑡𝑔𝑘𝑠) + 𝑔𝑖𝑠(𝑔𝑗𝑡𝑔𝑘𝛼 − 𝑔𝑗𝛼𝑔𝑘𝑡)

+𝑔𝑖𝑡(𝑔𝑗𝛼𝑔𝑘𝑠 − 𝑔𝑗𝑠𝑔𝑘𝛼)
] 𝑇𝑘𝑡 ,𝑠𝑗 𝐠𝑖 ⊗ 𝐠𝛼 

= [𝑔𝑗𝑠𝑇 .𝑡
𝑡 ,𝑠𝑗− 𝑇 ..

𝑠𝑗 ,𝑠𝑗 ](𝐠𝛼 ⊗ 𝐠𝛼) + [𝑇  ..
𝛼𝑗 ,𝑠𝑗− 𝑔𝑗𝛼𝑇 .𝑡

𝑡 ,𝑠𝑗 ](𝐠𝑠 ⊗ 𝐠𝛼)     

+ [𝑔𝑗𝛼𝑇 .𝑡
𝑠.,𝑠𝑗− 𝑔𝑗𝑠𝑇 .𝑡

𝛼.,𝑠𝑗 ](𝐠𝑡 ⊗ 𝐠𝛼) 

= [∇2(tr 𝑻) − div(div 𝑻)]𝑰 + (grad(div 𝑻))
T

− grad(grad (tr𝐓))

+ (grad(div 𝐓)) − ∇2𝐓T 

 

32. When 𝐓 is symmetric, show that tr (curl 𝐓) vanishes. 

curl 𝐓 = 𝝐𝑖𝑗𝑘𝑇𝛽𝑘 ,𝑗 𝐠𝑖 ⊗ 𝐠𝛽  



tr(curl 𝐓) = 𝜖𝑖𝑗𝑘𝑇𝛽𝑘 ,𝑗 𝐠𝑖 ⋅ 𝐠𝛽 

= 𝜖𝑖𝑗𝑘𝑇𝛽𝑘 ,𝑗 𝛿𝑖
𝛽

= 𝜖𝑖𝑗𝑘𝑇𝑖𝑘 ,𝑗  

which obviously vanishes on account of the symmetry and antisymmetry in 𝑖 and 

𝑘. In this case,  

curl(curl 𝐓)

= [∇2(tr 𝐓) − div(div 𝐓)]𝟏 − grad(grad (tr𝑻)) + 2(grad(div 𝑻))

− ∇2𝐓 

as (grad(div 𝐓))
T

=  grad(div 𝐓) if the order of differentiation is immaterial and 

𝐓 is symmetric. 

33. For a scalar function 𝛷 and a vector 𝑣𝑖 show that the divergence of the vector 

𝑣𝑖𝚽 is equal to, 𝐯 ⋅ 𝛁𝛷 + 𝛷 𝑑𝑖𝑣 𝐯 

(𝑣𝑖Φ)
,𝑖

= Φ𝑣𝑖
,𝑖 + 𝑣𝑖Φ,i 

Hence the result. 



34.  Show that curl 𝐮 × 𝐯 = (𝐯 ∙ ∇𝐮) + (𝐮 ⋅ div 𝐯) − (𝐯 ⋅ div 𝐮) − (𝐮 ∙ ∇ 𝐯) 

Taking the associated (covariant) vector of the expression for the cross product in 

the last example, it is straightforward to see that the LHS in indicial notation is,  

𝜖𝑙𝑚𝑖(𝜖𝑖𝑗𝑘𝑢𝑗𝑣𝑘)
,𝑚

 

Expanding in the usual way, noting the relation between the alternating tensors 

and the Kronecker deltas, 

𝜖𝑙𝑚𝑖(휀𝑖𝑗𝑘𝑢𝑗𝑣𝑘)
,𝑚

= 𝛿𝑗𝑘𝑖
𝑙𝑚𝑖(𝑢𝑗

,𝑚𝑣𝑘 − 𝑢𝑗𝑣𝑘
,𝑚) 

= 𝛿𝑗𝑘
𝑙𝑚(𝑢𝑗

,𝑚𝑣𝑘 − 𝑢𝑗𝑣𝑘
,𝑚) = |

𝛿𝑗
𝑙 𝛿𝑗

𝑚

𝛿𝑘
𝑙 𝛿𝑘

𝑚
| (𝑢𝑗

,𝑚𝑣𝑘 − 𝑢𝑗𝑣𝑘
,𝑚) 

= (𝛿𝑗
𝑙𝛿𝑘

𝑚 − 𝛿𝑘
𝑙 𝛿𝑗

𝑚)(𝑢𝑗
,𝑚𝑣𝑘 − 𝑢𝑗𝑣𝑘

,𝑚) 

= 𝛿𝑗
𝑙𝛿𝑘

𝑚𝑢𝑗
,𝑚𝑣𝑘 − 𝛿𝑗

𝑙𝛿𝑘
𝑚𝑢𝑗𝑣𝑘

,𝑚 + 𝛿𝑘
𝑙 𝛿𝑗

𝑚𝑢𝑗
,𝑚𝑣𝑘 − 𝛿𝑘

𝑙 𝛿𝑗
𝑚𝑢𝑗𝑣𝑘

,𝑚 

= 𝑢𝑙
,𝑚𝑣𝑚 − 𝑢𝑚

,𝑚𝑣𝑙 + 𝑢𝑙𝑣𝑚
,𝑚 − 𝑢𝑚𝑣𝑙

,𝑚 

Which is the result we seek in indicial notation. 



35. . In Cartesian coordinates let 𝑥 denote the magnitude of the position vector 𝐫 =

𝑥𝑖𝐞𝑖. Show that (a) 𝑥,𝒋 =
𝒙𝒋

𝒙
, (b) 𝑥,𝒊𝒋 =

𝟏

𝒙
𝛿𝒊𝒋 −

𝒙𝒊𝒙𝒋

(𝒙)𝟑, (c) 𝑥,𝒊𝒊 =
𝟐

𝒙
, (d) If 𝑼 =

𝟏

𝒙
, then 𝑼,𝒊𝒋 =

−𝜹𝒊𝒋

𝒙𝟑 +
𝟑𝒙𝒊𝒙𝒋

𝒙𝟓  𝑈,𝑖𝑖 = 0 and div (
𝐫

𝑥
) =

2

𝑥
. 

(𝑎)  𝑥 = √𝑥𝑖𝑥𝑖 

𝑥,𝑗 =
𝜕√𝑥𝑖𝑥𝑖

𝜕𝑥𝑗
=

𝜕√𝑥𝑖𝑥𝑖

𝜕(𝑥𝑖𝑥𝑖)
×

𝜕(𝑥𝑖𝑥𝑖)

𝜕𝑥𝑗
=

1

2√𝑥𝑖𝑥𝑖

[𝑥𝑖𝛿𝑖𝑗 + 𝑥𝑖𝛿𝑖𝑗] =
𝑥𝑗

𝑥
. 

(𝑏) 𝑥,𝑖𝑗 =
𝜕

𝜕𝑥𝑗
(

𝜕√𝑥𝑖𝑥𝑖

𝜕𝑥𝑖
) =

𝜕

𝜕𝑥𝑗
(

𝑥𝑖

𝑥
) =

𝑥
𝜕𝑥𝑖

𝜕𝑥𝑗
− 𝑥𝑖

𝜕𝑥
𝜕𝑥𝑗

(𝑥)2
=

𝑥𝛿𝑖𝑗 −
𝑥𝑖𝑥𝑗

𝑥
(𝑥)2

=
1

𝑥
𝛿𝑖𝑗 −

𝑥𝑖𝑥𝑗

(𝑥)3
 

(𝑐)  𝑥,𝑖𝑖 =
1

𝑥
𝛿𝑖𝑖 −

𝑥𝑖𝑥𝑖

(𝑥)3
=

3

𝑥
−

(𝑥)2

(𝑥)3
=

2

𝑥
. 

(𝑑) 𝑈 =
1

𝑥
  so that 



𝑈,𝑗 =
𝜕

1
𝑥

𝜕𝑥𝑗
=

𝜕
1
𝑥

𝜕𝑥
×

𝜕𝑥

𝜕𝑥𝑗
= −

1

𝑥2

1

𝑥
𝑥𝑗 = −

𝑥𝑗

𝑥3
 

Consequently, 

𝑈,𝑖𝑗 =
𝜕

𝜕𝑥𝑗

(𝑈,𝑖 ) = −
𝜕

𝜕𝑥𝑗
(

𝑥𝑖

𝑥3
) =

𝑥3 (
𝜕

𝜕𝑥𝑗
(−𝑥2)) + 𝑥𝑖

𝜕
𝜕𝑥𝑗

(𝑥3)

𝑥6

=

𝑥3(−𝛿𝑖𝑗) + 𝑥𝑖 (
𝜕(𝑥3)

𝜕𝑥
𝜕𝑥
𝜕𝑥𝑗

)

𝑥6
=

−𝑥3𝛿𝑖𝑗 + 𝑥𝑖 (3𝑥2
𝑥𝑗

𝑥 )

𝑥6
=

−𝛿𝑖𝑗

𝑥3
+

3𝑥𝑖𝑥𝑗

𝑥5
 

   𝑈,𝑖𝑖 =
−𝛿𝑖𝑖

𝑥3
+

3𝑥𝑖𝑥𝑖

𝑥5
=

−3

𝑥3
+

3𝑥2

𝑥5
= 0. 

div (
𝐫

𝑥
) = (

𝑥𝑗

𝑥
) ,𝑗 =

1

𝑥
𝑥𝑗 ,𝑗+ (

1

𝑥
)

,𝑗
=

3

𝑥
+ 𝑥𝑗 (

𝜕

𝜕𝑥
(

1

𝑥
) 

𝑑𝑥

𝑑𝑥𝑗
) 

=
3

𝑥
+ 𝑥𝑗 [− (

1

𝑥2
) 

𝑥𝒋

𝑥
] =

3

𝑥
−

𝑥𝑗𝑥𝑗

𝑥3
=

3

𝑥
−

1

𝑥
=

2

𝑥
 

 



36. For vectors 𝐮, 𝐯 and 𝐰, show that (𝐮 ×)(𝐯 ×)(𝐰 ×) = 𝐮 ⊗(𝐯 × 𝐰) − (𝐮 ⋅

𝐯)𝐰 ×. 

The tensor (𝐮 ×) = −𝜖𝑙𝑚𝑛𝑢𝑛𝐠𝑙 ⊗ 𝐠𝑚 similarly, (𝐯 ×) = −𝜖𝛼𝛽𝛾𝑣𝛾𝐠𝛼 ⊗ 𝐠𝛽 and 

(𝐰 ×) = −𝜖𝑖𝑗𝑘𝑤𝑘𝐠𝑖 ⊗ 𝐠𝑗. Clearly, 

(𝐮 ×)(𝐯 ×)(𝐰 ×) = −𝜖𝑙𝑚𝑛𝜖𝛼𝛽𝛾𝜖𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐠𝛼 ⊗ 𝐠𝛽)(𝐠𝑙 ⊗ 𝐠𝑚)(𝐠𝑖 ⊗ 𝐠𝑗)

= −𝜖𝛼𝛽𝛾𝜖𝑙𝑚𝑛𝜖𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐠𝛼 ⊗ 𝐠𝑗)𝛿𝛽
𝑙 𝛿𝑖

𝑚

= −𝜖𝛼𝑙𝛾𝜖𝑙𝑖𝑛𝜖𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐠𝛼 ⊗ 𝐠𝑗) 

= −𝜖𝑙𝛼𝛾𝜖𝑙𝑛𝑖𝜖𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐠𝛼 ⊗ 𝐠𝑗)

= −(𝛿𝑛
𝛼𝛿𝑖

𝛾
− 𝛿𝑖

𝛼𝛿𝑛
𝛾

 )𝜖𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐠𝛼 ⊗ 𝐠𝑗)

= −𝜖𝑖𝑗𝑘𝑢𝛼𝑣𝑖𝑤𝑘(𝐠𝛼 ⊗ 𝐠𝑗) + 𝜖𝑖𝑗𝑘𝑢𝛾𝑣𝛾𝑤𝑘(𝐠𝑖 ⊗ 𝐠𝑗)  

= [𝐮 ⊗ (𝐯 × 𝐰) − (𝐮 ⋅ 𝐯)𝐰 ×] 

37. Show that [𝐮, 𝐯, 𝐰] = tr[(𝐮 ×)(𝐯 ×)(𝐰 ×)] 

In the above we have shown that (𝐮 ×)(𝐯 ×)(𝐰 ×) = [𝐮 ⊗ (𝐯 × 𝐰) −

(𝐮 ⋅ 𝐯)𝐰 ×] 



Because the vector cross is traceless, the trace of [(𝐮 ⋅ 𝐯)𝐰 ×] = 0. The trace of 

the first term, 𝐮 ⊗ (𝐯 × 𝐰) is obviously the same as [𝐮, 𝐯, 𝐰] which completes 

the proof. 

38. Show that (𝐮 ×)(𝐯 ×) =  (𝐮 ⋅  𝐯)𝟏 −  𝐮 ⊗ 𝐯 and that tr[(𝐮 ×)(𝐯 ×)] = 2(𝐮 ⋅

 𝐯) 

(𝐮 ×)(𝐯 ×) = −𝜖𝑙𝑚𝑛𝜖𝛼𝛽𝛾𝑢𝑛𝑣𝛾(𝐠𝛼 ⊗ 𝐠𝛽)(𝐠𝑙 ⊗ 𝐠𝑚)

= −𝜖𝑙𝑚𝑛𝜖𝛼𝛽𝛾𝑢𝑛𝑣𝛾(𝐠𝛼 ⊗ 𝐠𝑚)𝛿𝛽
𝑙 = −𝜖𝛽𝑚𝑛𝜖𝛽𝛾𝛼𝑢𝑛𝑣𝛾(𝐠𝛼 ⊗ 𝐠𝑚)

= [𝛿𝑛
𝛾

𝛿𝑚
𝛼 − 𝛿𝑚

𝛾
𝛿𝑛

𝛼]𝑢𝑛𝑣𝛾(𝐠𝛼 ⊗ 𝐠𝑚)

= 𝑢𝑛𝑣𝑛(𝐠𝛼 ⊗ 𝐠𝛼) − 𝑢𝑛𝑣𝑚(𝐠𝑛 ⊗ 𝐠𝑚) =  (𝐮 ⋅  𝐯)𝟏 −  𝐮 ⊗ 𝐯 

Obviously, the trace of this tensor is 2(𝐮 ⋅  𝐯) 

39. The position vector in the above example 𝒓 = 𝑥𝑖𝒆𝑖. Show that (a) div 𝒓 = 𝟑, (b) 

div (𝒓 ⊗ 𝒓) = 𝟒𝒓, (c) div 𝒓 = 3, and (d) grad 𝒓 = 𝟏 and (e) curl (𝒓 ⊗ 𝒓) = −𝒓 × 

grad 𝒓 = 𝑥𝑖 ,𝑗 𝒆𝑖 ⊗ 𝒆𝑗  

= 𝛿𝑖𝑗𝒆𝑖 ⊗ 𝒆𝑗 = 𝟏 

div 𝒓 = 𝑥𝑖 ,𝑗 𝒆𝑖 ⋅ 𝒆𝑗  

= 𝛿𝑖𝑗𝛿𝑖𝑗 = 𝛿𝑗𝑗 = 3. 𝒓 ⊗ 𝒓 = 𝑥𝑖𝒆𝑖 ⊗ 𝑥𝑗𝒆𝑗 = 𝑥𝑖𝑥𝑗𝒆𝑖 ⊗ 𝒆𝒋 



grad(𝒓 ⊗ 𝒓) = (𝑥𝑖𝑥𝑗),𝑘 𝒆𝑖 ⊗ 𝒆𝑗 ⊗ 𝒆𝑘 = (𝑥𝑖 ,𝑘 𝑥𝑗 + 𝑥𝑖𝑥𝑗 ,𝑘 )𝒆𝑖 ⊗ 𝒆𝑗 ⋅ 𝒆𝑘  

= (𝛿𝑖𝑘𝑥𝑗 + 𝑥𝑖𝛿𝑗𝑘)𝛿𝑗𝑘𝒆𝑖 = (𝛿𝑖𝑘𝑥𝑘 + 𝑥𝑖𝛿𝑗𝑗)𝒆𝑖  

= 4𝑥𝑖𝒆𝑖 = 4𝒓 

  curl(𝒓 ⊗ 𝒓) = 𝜖𝛼𝛽𝛾(𝑥𝑖𝑥𝛾),𝛽 𝒆𝛼 ⊗ 𝒆𝒊 

= 𝜖𝛼𝛽𝛾(𝑥𝑖 ,𝛽 𝑥𝛾 + 𝑥𝑖𝑥𝛾,𝛽 )𝒆𝛼 ⊗ 𝒆𝒊 

= 𝜖𝛼𝛽𝛾(𝛿𝑖𝛽𝑥𝛾 + 𝑥𝑖𝛿𝛾𝛽)𝒆𝛼 ⊗ 𝒆𝒊 

= 𝜖𝛼𝑖𝛾𝑥𝛾𝒆𝛼 ⊗ 𝒆𝒊 + 𝜖𝛼𝛽𝛽𝑥𝑖𝒆𝛼 ⊗ 𝒆𝒊 

= −𝜖𝛼𝛾𝑖𝑥𝛾𝒆𝛼 ⊗ 𝒆𝒊 = −𝒓 × 

40. Define the magnitude of tensor 𝐀 as, |𝐀| = √tr(𝐀𝐀T) Show that 
∂|𝐀|

∂𝐀
=

𝐀

|𝐀|
 

By definition, given a scalar 𝛼, the derivative of a scalar function of a tensor 𝑓(𝐀) 

is  

∂𝑓(𝐀)

∂𝐀
: 𝐁 = lim

𝛼→0

∂

∂𝛼
𝑓(𝐀 + 𝛼𝐁) 

for any arbitrary tensor 𝐁. 

In the case of 𝑓(𝐀) = |𝐀|, 



∂|𝐀|

∂𝐀
: 𝐁 = lim

𝛼→0

∂

∂𝛼
|𝐀 + 𝛼𝐁| 

|𝐀 + 𝛼𝐁| = √tr(𝐀 + 𝛼𝐁)(𝐀 + 𝛼𝐁)T = √tr(𝐀𝐀T + 𝛼𝐁𝐀T + 𝛼𝐀𝐁T + 𝛼2𝐁𝐁T) 

Note that everything under the root sign here is scalar and that the trace 

operation is linear. Consequently, we can write, 

lim
𝛼→0

∂

∂𝛼
|𝐀 + 𝛼𝐁| = lim

𝛼→0

tr (𝐁𝐀T) + tr (𝐀𝐁T) + 2𝛼tr (𝐁𝐁T)

2√tr(𝐀𝐀T + 𝛼𝐁𝐀T + 𝛼𝐀𝐁T + 𝛼2𝐁𝐁T)
=

2𝐀: 𝐁

2√𝐀: 𝐀

=
𝐀

|𝐀|
: 𝐁 

So that,  

∂|𝐀|

∂𝐀
: 𝐁 =

𝐀

|𝐀|
: 𝐁 

or,  

∂|𝐀|

∂𝐀
=

𝐀

|𝐀|
 

as required since 𝐁 is arbitrary. 



41. Show that 
𝜕𝑰3(𝑺)

𝜕𝑺
=

𝜕det(𝑺)

𝜕𝑺
= 𝑺𝒄 the cofactor of 𝑺. 

Clearly 𝑺𝒄 = det(𝑺) 𝑺−T = 𝑰3(𝑺) 𝑺−T. Details of this for the contravariant 

components of a tensor is presented below. Let 

det(𝑺) ≡ |𝑺| ≡ 𝑆 =
1

3!
𝜖𝑖𝑗𝑘𝜖𝑟𝑠𝑡𝑆𝑖𝑟𝑆𝑗𝑠𝑆𝑘𝑡 

Differentiating wrt 𝑆𝛼𝛽, we obtain, 

𝜕𝑺

𝜕𝑆𝛼𝛽
𝐠𝛼 ⊗ 𝐠𝛽 =

1

3!
𝜖𝑖𝑗𝑘𝜖𝑟𝑠𝑡 [

𝜕𝑆𝑖𝑟

𝜕𝑆𝛼𝛽
𝑆𝑗𝑠𝑆𝑘𝑡 + 𝑆𝑖𝑟

𝜕𝑆𝑗𝑠

𝜕𝑆𝛼𝛽
𝑆𝑘𝑡 + 𝑆𝑖𝑟𝑆𝑗𝑠

𝜕𝑆𝑘𝑡

𝜕𝑆𝛼𝛽
] 𝐠𝛼 ⊗ 𝐠𝛽 

=
1

3!
𝜖𝑖𝑗𝑘𝜖𝑟𝑠𝑡 [𝛿𝑖

𝛼𝛿𝑟
𝛽

𝑆𝑗𝑠𝑆𝑘𝑡 + 𝑆𝑖𝑟𝛿𝑗
𝛼𝛿𝑠

𝛽
𝑆𝑘𝑡 + 𝑆𝑖𝑟𝑆𝑗𝑠𝛿𝑘

𝛼𝛿𝑡
𝛽

] 𝐠𝛼 ⊗ 𝐠𝛽 

           =
1

3!
𝜖𝛼𝑗𝑘𝜖𝛽𝑠𝑡[𝑆𝑗𝑠𝑆𝑘𝑡 + 𝑆𝑗𝑠𝑆𝑘𝑡 + 𝑆𝑗𝑠𝑆𝑘𝑡]𝐠𝛼 ⊗ 𝐠𝛽 

          =
1

2!
𝜖𝛼𝑗𝑘𝜖𝛽𝑠𝑡𝑆𝑗𝑠𝑆𝑘𝑡𝐠𝛼 ⊗ 𝐠𝛽 ≡ [𝑆c]𝛼𝛽𝐠𝛼 ⊗ 𝐠𝛽 

Which is the cofactor of [𝑆𝛼𝛽] or 𝑺 



42. For a scalar variable 𝛼, if the tensor 𝐓 = 𝐓(𝛼) and �̇� ≡
𝑑𝐓

𝑑𝛼
, Show that 

𝑑

𝑑𝛼
det(𝐓) = det(𝐓) tr(�̇�𝐓−𝟏) 

Let 𝑨 ≡ �̇�𝑻−1 so that, �̇� = 𝑨𝑻. In component form, we have �̇�𝑗
𝑖 = 𝐴𝑚

𝑖 𝑇𝑗
𝑚. 

Therefore,  

𝑑

𝑑𝛼
det(𝑻) =

𝑑

𝑑𝛼
(𝜖𝑖𝑗𝑘𝑇𝑖

1𝑇𝑗
2𝑇𝑘

3) = 𝜖𝑖𝑗𝑘(�̇�𝑖
1𝑇𝑗

2𝑇𝑘
3 + 𝑇𝑖

1�̇�𝑗
2𝑇𝑘

3 + 𝑇𝑖
1𝑇𝑗

2�̇�𝑘
3) 

= 𝜖𝑖𝑗𝑘(𝐴𝑙
1𝑇𝑖

𝑙𝑇𝑗
2𝑇𝑘

3 + 𝑇𝑖
1𝐴𝑚

2 𝑇𝑗
𝑚𝑇𝑘

3 + 𝑇𝑖
1𝑇𝑗

2𝐴𝑛
3 𝑇𝑘

𝑛) 

= 𝜖𝑖𝑗𝑘 [(𝐴1
1𝑇𝑖

1 + 𝐴2
1𝑇𝑖

2 + 𝐴3
1𝑇𝑖

3 ) 𝑇𝑗
2𝑇𝑘

3 + 𝑇𝑖
1 ( 𝐴1

2𝑇𝑗
1 + 𝐴2

2𝑇𝑗
2

+ 𝐴3
2𝑇𝑗

3 ) 𝑇𝑘
3 + 𝑇𝑖

1𝑇𝑗
2 ( 𝐴1

3𝑇𝑘
1 + 𝐴2

3𝑇𝑘
2 + 𝐴3

3𝑇𝑘
3)] 

All the boxed terms in the above equation vanish on account of the contraction of 

a symmetric tensor with an antisymmetric one. 

(For example, the first boxed term yields, 𝜖𝑖𝑗𝑘𝐴2
1𝑇𝑖

2𝑇𝑗
2𝑇𝑘

3 

Which is symmetric as well as antisymmetric in 𝑖 and 𝑗. It therefore vanishes. The 

same is true for all other such terms.) 



𝑑

𝑑𝛼
det(𝐓) = 𝜖𝑖𝑗𝑘[(𝐴1

1𝑇𝑖
1)𝑇𝑗

2𝑇𝑘
3 + 𝑇𝑖

1(𝐴2
2𝑇𝑗

2)𝑇𝑘
3 + 𝑇𝑖

1𝑇𝑗
2(𝐴3

3𝑇𝑘
3)] 

= 𝐴𝑚
𝑚𝜖𝑖𝑗𝑘𝑇𝑖

1𝑇𝑗
2𝑇𝑘

3 = tr(�̇�𝐓−1) det(𝐓) 

as required. 

 

43. Without breaking down into components, establish the fact that 𝜕det(𝐓)

𝜕𝐓
= 𝐓𝒄 

Start from Liouville’s Theorem, given a scalar parameter such that 𝐓 =  𝐓(𝛼), 

∂

∂𝛼
(det(𝐓)) = det(𝐓) tr [(

∂𝐓

∂𝛼
) 𝐓−𝟏] = [det(𝐓) 𝐓−𝐓]: (

∂𝐓

∂𝛼
) 

By the simple rules of multiple derivative, 

∂

∂𝛼
(det(𝐓)) = [

∂

∂𝐓
(det(𝐓))]: (

∂𝐓

∂𝛼
) 

It therefore follows that, 

[
∂

∂𝐓
(det(𝐓)) − [det(𝐓) 𝐓−𝐓]]: (

∂𝐓

∂𝛼
) = 0 

Hence 



∂

∂𝐓
(det(𝐓)) = [det(𝐓) 𝐓−𝐓] = 𝐓𝐜 

44.  [Gurtin 3.4.2a] If 𝐓 is invertible, show that 
∂

∂𝐓
(log det(𝐓)) = 𝐓−𝐓 

∂

∂𝐓
(log det(𝐓)) =

∂(log det(𝐓))

∂det(𝐓)
 
∂det(𝐓)

∂𝐓
 

=
1

det(𝐓)
𝐓𝐜 =

1

det(𝐓)
det(𝐓) 𝐓−𝐓 

= 𝐓−𝐓 

45. [Gurtin 3.4.2a] If 𝐓 is invertible, show that 
∂

∂𝐓
(log det(𝐓−1)) = −𝐓−𝐓 

∂

∂𝐓
(log det(𝐓−1)) =

∂(log det(𝐓−1))

∂det(𝐓−1)
 
∂det(𝐓−1)

∂𝐓−1

∂𝐓−1

∂𝐓
 

=
1

det(𝐓−1)
𝐓−𝐜(−𝐓−2) 

=
1

det(𝐓−1)
det(𝐓−1) 𝐓𝐓(−𝐓−2) 

= −𝐓−𝐓 



 

46. Given that 𝐀 is a constant tensor, Show that 
∂

∂𝐒
tr(𝐀𝐒) = 𝐀T 

In invariant components terms, let 𝐀 = A𝑖𝑗𝐠𝑖 ⊗ 𝐠𝑗  and let 𝐒 = S𝛼𝛽𝐠𝛼 ⊗ 𝐠𝛽.  

𝐀𝐒 = A𝑖𝑗S𝛼𝛽(𝐠𝑖 ⊗ 𝐠𝑗)(𝐠𝛼 ⊗ 𝐠𝛽) 

= A𝑖𝑗S𝛼𝛽(𝐠𝑖 ⊗ 𝐠𝛽)𝛿𝑗
𝛼 

= A𝑖𝑗S𝑗𝛽(𝐠𝑖 ⊗ 𝐠𝛽) 

tr(𝐀𝐒) = A𝑖𝑗S𝑗𝛽(𝐠𝑖 ⋅ 𝐠𝛽) 

= A𝑖𝑗S𝑗𝛽𝛿𝑖
𝛽

= A𝑖𝑗S𝑗𝑖 

∂

∂𝐒
tr(𝐀𝐒) =

∂

∂S𝛼𝛽
tr(𝐀𝐒)𝐠𝛼 ⊗ 𝐠𝛽  

=
∂A𝑖𝑗S𝑗𝑖

∂S𝛼𝛽
𝐠𝛼 ⊗ 𝐠𝛽  

= A𝑖𝑗𝛿𝑗
𝛼𝛿𝑖

𝛽
𝐠𝛼 ⊗ 𝐠𝛽 = A𝑖𝑗𝐠𝑗 ⊗ 𝐠𝑖 = 𝐀T =

∂

∂𝐒
(𝐀T: 𝐒) 

as required. 



47. Given that 𝐀 and 𝐁 are constant tensors, show that 
∂

∂𝐒
tr(𝐀𝐒𝐁T) = 𝐀T𝐁 

First observe that tr(𝐀𝐒𝐁T) =  tr(𝐁T𝐀𝐒). If we write, 𝐂 ≡ 𝐁T𝐀, it is obvious 

from the above that 
∂

∂𝐒
tr(𝐂𝐒) = 𝐂T. Therefore,  

∂

∂𝐒
tr(𝐀𝐒𝐁T) = (𝐁T𝐀)𝐓 = 𝐀T𝐁 

48. Given that 𝐀 and 𝐁 are constant tensors, show that 
∂

∂𝐒
tr(𝐀𝐒T𝐁T) = 𝐁T𝐀 

Observe that tr(𝐀𝐒T𝐁T) =  tr(𝐁T𝐀𝐒T) =  tr[𝐒(𝐁T𝐀)T] =  tr[(𝐁T𝐀)T𝐒] 

[The transposition does not alter trace; neither does a cyclic permutation. Ensure 

you understand why each equality here is true.] Consequently,  

∂

∂𝐒
tr(𝐀𝐒T𝐁T) =

∂

∂𝐒
 tr[(𝐁T𝐀)T𝐒] = [(𝐁T𝐀)T]𝐓 = 𝐁T𝐀 



49. Let 𝑺 be a symmetric and positive definite tensor and let 𝐼1(𝑺), 𝐼2(𝑺)and𝐼3(𝑺) be 

the three principal invariants of 𝑺 show that (a) 
𝜕𝑰1(𝑺)

𝜕𝑺
= 𝟏 the identity tensor, (b) 

𝜕𝑰2(𝑺)

𝜕𝑺
= 𝐼1(𝑺)𝟏 − 𝑺 and (c) 

𝜕𝐼3(𝑺)

𝜕𝑺
= 𝐼3(𝑺) 𝑺−1 

𝜕𝑰1(𝑺)

𝜕𝑺
  can be written in the invariant component form as, 

𝜕𝐼1(𝑺)

𝜕𝑺
=

𝜕𝐼1(𝑺)

𝜕𝑆𝑖
𝑗

𝐠𝑖 ⊗ 𝐠𝑗  

Recall that 𝐼1(𝐒) = tr(𝐒) = 𝑆α
α hence 

𝜕𝐼1(𝐒)

𝜕𝐒
=

𝜕𝐼1(𝐒)

𝜕𝑆𝑖
𝑗

𝐠𝑖 ⊗ 𝐠𝑗 =
𝜕𝑆α

α

𝜕𝑆𝑖
𝑗

𝐠𝑖 ⊗ 𝐠𝑗  

= 𝛿𝛼
𝑖 𝛿𝑗

𝛼𝐠𝑖 ⊗ 𝐠𝑗 = 𝛿𝑗
𝑖𝐠𝑖 ⊗ 𝐠𝑗  

=  𝟏 

which is the identity tensor as expected. 
𝜕𝐼2(𝐒)

𝜕𝐒
 in a similar way can be written in the invariant component form as, 



𝜕𝐼2(𝐒)

𝜕𝐒
=

1

2

𝜕𝐼1(𝐒)

𝜕𝑆𝑖
𝑗

[𝑆α
α𝑆𝛽

𝛽
− 𝑆𝛽

α𝑆α
𝛽

] 𝐠𝑖 ⊗ 𝐠𝑗  

where we have utilized the fact that 𝐼2(𝐒) =
1

2
[tr2(𝐒) − tr(𝐒2)]. Consequently, 

𝜕𝐼2(𝐒)

𝜕𝐒
=

1

2

𝜕

𝜕𝑆𝑖
𝑗

[𝑆α
α𝑆𝛽

𝛽
− 𝑆𝛽

α𝑆α
𝛽

] 𝐠𝑖 ⊗ 𝐠𝑗  

=
1

2
[𝛿𝛼

𝑖 𝛿𝑗
𝛼𝑆𝛽

𝛽
+ 𝛿𝛽

𝑖 𝛿𝑗
𝛽

𝑆α
α − 𝛿𝛽

𝑖 𝛿𝑗
𝛼𝑆α

𝛽
− 𝛿𝛼

𝑖 𝛿𝑗
𝛽

𝑆𝛽
α] 𝐠𝑖 ⊗ 𝐠𝑗  

=
1

2
[𝛿𝑗

𝑖𝑆𝛽
𝛽

+ 𝛿𝑗
𝑖𝑆α

α − 𝑆𝑖
𝑗

− 𝑆𝑖
𝑗
] 𝐠𝑖 ⊗ 𝐠𝑗 = (𝛿𝑗

𝑖𝑆α
α − 𝑆𝑖

𝑗
)𝐠𝑖 ⊗ 𝐠𝑗  

= 𝐼1(𝐒)𝟏 − 𝐒 

det(𝑺) ≡ |𝑺| ≡ 𝑆 =
1

3!
𝜖𝑖𝑗𝑘𝜖𝑟𝑠𝑡𝑆𝑖𝑟𝑆𝑗𝑠𝑆𝑘𝑡 

Differentiating wrt 𝑆𝛼𝛽, we obtain, 

𝜕𝑺

𝜕𝑆𝛼𝛽
𝐠𝛼 ⊗ 𝐠𝛽 =

1

3!
𝜖𝑖𝑗𝑘𝜖𝑟𝑠𝑡 [

𝜕𝑆𝑖𝑟

𝜕𝑆𝛼𝛽
𝑆𝑗𝑠𝑆𝑘𝑡 + 𝑆𝑖𝑟

𝜕𝑆𝑗𝑠

𝜕𝑆𝛼𝛽
𝑆𝑘𝑡 + 𝑆𝑖𝑟𝑆𝑗𝑠

𝜕𝑆𝑘𝑡

𝜕𝑆𝛼𝛽
] 𝐠𝛼 ⊗ 𝐠𝛽 

=
1

3!
𝜖𝑖𝑗𝑘𝜖𝑟𝑠𝑡 [𝛿𝑖

𝛼𝛿𝑟
𝛽

𝑆𝑗𝑠𝑆𝑘𝑡 + 𝑆𝑖𝑟𝛿𝑗
𝛼𝛿𝑠

𝛽
𝑆𝑘𝑡 + 𝑆𝑖𝑟𝑆𝑗𝑠𝛿𝑘

𝛼𝛿𝑡
𝛽

] 𝐠𝛼 ⊗ 𝐠𝛽 



           =
1

3!
𝜖𝛼𝑗𝑘𝜖𝛽𝑠𝑡[𝑆𝑗𝑠𝑆𝑘𝑡 + 𝑆𝑗𝑠𝑆𝑘𝑡 + 𝑆𝑗𝑠𝑆𝑘𝑡]𝐠𝛼 ⊗ 𝐠𝛽 

          =
1

2!
𝜖𝛼𝑗𝑘𝜖𝛽𝑠𝑡𝑆𝑗𝑠𝑆𝑘𝑡𝐠𝛼 ⊗ 𝐠𝛽 ≡ [𝑆c]𝛼𝛽𝐠𝛼 ⊗ 𝐠𝛽 

Which is the cofactor of [𝑆𝛼𝛽] or 𝑺 

 

50. For a tensor field 𝜩, The volume integral in the region Ω ⊂ ℰ, ∫ (grad 𝜩)
Ω

𝑑𝑣 =

∫ 𝜩 ⊗ 𝒏
∂Ω

𝑑𝑠 where 𝒏 is the outward drawn normal to 𝜕Ω – the boundary of Ω. Show 

that for a vector field 𝒇 

∫ (div 𝒇)
Ω

𝑑𝑣 = ∫ 𝒇 ⋅ 𝒏
𝜕Ω

𝑑𝑠 

Replace 𝜩 by the vector field 𝒇 we have, 

∫ (grad 𝒇)
Ω

𝑑𝑣 = ∫ 𝒇 ⊗ 𝒏
∂Ω

𝑑𝑠 

Taking the trace of both sides and noting that both trace and the integral are 

linear operations, therefore we have,  



∫ (div 𝒇)
Ω

𝑑𝑣 = ∫ tr(grad 𝒇)
Ω

𝑑𝑣 

= ∫ tr(𝒇 ⊗ 𝒏)
∂Ω

𝑑𝑠 

= ∫ 𝒇 ⋅ 𝒏
𝜕Ω

𝑑𝑠 

 

51. Show that for a scalar function Hence the divergence theorem 

becomes,∫ (grad 𝜙)
Ω

𝑑𝑣 = ∫ 𝜙𝒏
𝜕Ω

𝑑𝑠 

Recall that for a vector field, that for a vector field 𝒇 

∫ (div 𝒇)
Ω

𝑑𝑣 = ∫ 𝒇 ⋅ 𝒏
𝜕Ω

𝑑𝑠 

if we write, 𝐟 = 𝜙𝒂 where 𝒂 is an arbitrary constant vector, we have, 

∫ (div[𝜙𝒂])
Ω

𝑑𝑣 = ∫ 𝜙𝒂 ⋅ 𝐧
𝜕Ω

𝑑𝑠 = 𝒂 ⋅ ∫ 𝜙𝐧
𝜕Ω

𝑑𝑠 

For the LHS, note that, div[𝜙𝒂] = tr(grad[𝜙𝒂]) 

grad[𝜙𝒂] = (𝜙𝑎𝑖),𝑗 𝐠𝑖 ⊗ 𝐠𝑗 = 𝑎𝑖𝜙,𝑗 𝐠𝑖 ⊗ 𝐠𝑗 



The trace of which is, 

𝑎𝑖𝜙,𝑗 𝐠𝑖 ⋅ 𝐠𝑗 = 𝑎𝑖𝜙,𝑗 𝛿𝑖
𝑗

= 𝑎𝑖𝜙,𝑖 = 𝒂 ⋅ grad 𝜙 

For the arbitrary constant vector 𝒂, we therefore have that, 

∫ (div[𝜙𝒂])
Ω

𝑑𝑣 = 𝒂 ⋅ ∫ grad 𝜙 
Ω

𝑑𝑣 = 𝒂 ⋅ ∫ 𝜙𝐧
𝜕Ω

𝑑𝑠 

∫ grad 𝜙 
Ω

𝑑𝑣 = ∫ 𝜙𝐧
𝜕Ω

𝑑𝑠 


