1. Divergence of a product: Given that ¢ is a scalar field and v a vector field, show that
div(ev) = (gradp) - v+ @ divv
grad(pv) = (¢v'),;8: ® g’
= @,j v'g, @ g/ + <Pvi:j g Qg
=v® (grad ¢) + @ gradv
Now, div(pv) = tr(grad(cpv)). Taking the trace of the above, we have:
div(pv) = v (grad @) + @ divv
2.Show that grad(u - v) = (grad u)’v + (grad v)Tu
u - v = u'v; is a scalar sum of components.
grad(u - v) = (u'v;),; g’/
= ui,j vigj + uivi,j gj
Now grad u = ui,j g; ® g’/ swapping the bases, we have that,
(gradw)T =u',; (g/ ® g;).
Writing v = v;.8¥, we have that, (grad w)Tv = u’,; v, (g’ ® g;)g* =

. o .
u',; v 86 = u',;vig’



It is easy to similarly show that uivi,j g/ = (grad v)Tu. Clearly,
grad(u-v) = (u'v;),; 8/ =u',;vig/ +u'v;,; g
= (grad u)'v + (grad v)Tu
As required.

3.Show that grad(u X v) = (u X)gradv — (v X)grad u
uxv=e*yv,g;
Recall that the gradient of this vector is the tensor,
grad(u x v) = (e uv;), 8, ® g
=€ Jku],l V8 ® gl + eV u]vkll g Qg
= —eu;, v 8 @ g' + eV uvy, 8, ® 8
= — (vXx)grad u + (u x)grad v

4.Show thatdiv(uxv) =v-curlu—u-curlv
We already have the expression for grad(u X v) above; remember that

div (u X v) = tr[grad(u X v)]

ikj

— l
= —€ Ju]»lvkgl g +E u]vkllgl g



= —e™Mu;, v, 8; + eVRuvy,, 6

ik i
= —e"Ju;,; v + €5Uvy,

5. Given a scalar point function ¢ and a vector field v, show that curl (¢v) = ¢ curl v +

(grad ¢p) X v.
curl (¢pv) = Eijk(qbvk):j 8i
= eU*(,; vy + Pvk.; )8
= €%, vi8; + €7 Py, 8
= (V¢) X v+ ¢ curlv

6.Show that div (u Q v) = (divv)u + (grad u)v
u ® vis the tensor, u'v/g; ® g ;. The gradient of this is the third order tensor,
grad (U@ v) = (u'v/), 8 Vg ® g~
And by divergence, we mean the contraction of the last basis vector:
div (u ® v) = (u'v/),, (8: ® g;)8"
= (u'v/) k86 = (u'v/),; 8
=u',;jv'g; +u'v’,; g;




= (grad u)v + (divv)u

7.For a scalar field ¢ and a tensor field T show that grad (¢T) = ¢pgrad T+ T &
gradg. Also show that div (¢pT) = ¢ div T + Tgradg
grad(¢T) = (¢TY),, 8: Q@ g, ® g~
= (¢:k TY + ¢TY,, )gi Xgi X g~
=T Q gradp + ¢grad T
Furthermore, we can contract the last two bases and obtain,
div(¢T) = (¢ TV + ¢TY 1 )8 R g; - 8
— (¢1k TV + ¢Turk )gla_]k

=T* ¢ 8+ dT i 8
= Tgrad¢ + ¢ div T

8.For two arbitrary vectors, u and v, show that grad(u X v) = (u X)gradv —
(v X)gradu

grad(u X v) = (Gijkujvk):l g Qg



= (Eijku]',l Vg + Eijkujvkrl )gl ® gl
= (uj:l e vy + v, EUkuj)gi ® g’
= —(v x)gradu + (u x)gradv

9. For a vector field u, show that grad(u X) is a third ranked tensor. Hence or otherwise
show that div(u X) = —curl u.
The second—order tensor (u X) is defined as eijkujgi X gj. Taking the covariant
derivative with an independent base, we have
grad(u x) = Eijkujrl g8 8, Qg
This gives a third order tensor as we have seen. Contracting on the last two bases,
div(u x) = eV*u;, g8; @ gy - g’
= eijkuj:l gi5ilc
= Eijkuj:k 8i

= —curlu

10.  Show that div (¢p1) = grad ¢
Note that ¢p1 = (qbgaﬂ)g“ ® gP. Also note that



grad p1 = ($gap).i 8" @ 8" @ g
The divergence of this third order tensor is the contraction of the last two bases:
div (¢1) = tr(grad 1)  (¢9up).i (8* ® 8°)8"  (#gap).i8* 9"
= ¢,i 9ap9"'8"
= $,i0,8" = ¢,;8 grad¢
11.  Show that curl (¢p1) = (grad ¢) X
Note that ¢p1 = (cpgaﬁ)g“ ® gf,and thatcurl T = eijkTak,j g; ® g so that,
curl (¢1) = €/*(pgar),; 8 @ 8*
= €% (,; gor )8 @ 8% = €%, 8; R 8y
= (grad ¢) X
12.  Show that curl (v X) = (divv)1l — grad v
(vx)=€e""v, g g
curl T = €V*Tpy,; 8; @ g*
so that
curl (vx) = eV ey, . g, @ g



= (glagfﬁ = glﬁg]a) v )j gi ® g
=v,;8"Q®8g. —v,;8 Qg
= (divv)l — gradv

13. Showthatdiv(uXv)=v-curlu—u-curlv
div (u x v) = (eY*uvy, ),

Noting that the tensor €% behaves as a constant under a covariant

differentiation, we can write,

_ i
div (u x v) = (eV ujvk),i
R -
= e*u;,; v + €Uy,
=v-curlu—u-curlv

14.  Given a scalar point function ¢ and a vector field v, show that curl (¢v) =
¢ curlv + (Vo) X v.
curl (¢pv) = eV*(¢pvy),; 8
= Gijk(fp»j Vg + Py, )gi

_ _ijk ijk
=e*p,jvi8; + €7 Pvy,; 8i



(Vo) X v+ ¢ curlv
15.  Show that curl (grad ¢)

For any tensorv = v,g%

o

curl v = e v,,; g;
Let v = grad ¢. Clearly, in this case, v, = ¢,, so that vy,; = ¢,y;. It therefore
follows that,

curl (grad ¢) = €Y*¢,;; 8; = 0.

The contraction of symmetric tensors with unsymmetric led to this conclusion.
Note that this presupposes that the order of differentiation in the scalar field is
immaterial. This will be true only if the scalar field is continuous — a proposition
we have assumed in the above.

16.  Show that curl (grad v) = 0
Forany tensor T = Typ8% & gh
curl T = EijkTak'j g ®g"”



Let T = grad v. Clearly, in this case, Typ = Vg,p SO that Ty, ; = Vgkj- It
therefore follows that,

curl (grad v) = €Y%, 8; ® g% = 0.
The contraction of symmetric tensors with unsymmetric led to this conclusion.

Note that this presupposes that the order of differentiation in the vector field is
immaterial. This will be true only if the vector field is continuous — a proposition

we have assumed in the above.

17.  Show that curl (grad v)T = grad(curl v)
curl T = €Y*T,;,,; g; ® g% Clearly,
curl TT = €Y*Ty,,; 8; ® g%
so that curl (grad v)T = €Y% vy, g; ® g% But curl v = €Y v,,; g;. The
gradient of this is,

grad(curl v) = (7%vy,; ). 8; ® 8% = €1, 54 8 ® g% = curl (grad v)T

18. Show that div (grad ¢ X grad %) = 0
grad ¢ x grad 8 = €U%¢,; 0, g;



The gradient of this vector is the tensor,
grad(grad ¢ X grad 0) = (eijkq,'),j 0, )18 Q g
= Eijk(P»jl H»kgi®gl+€ijk¢»j 0,8 g’
The trace of the above result is the divergence we are seeking:
div (grad ¢ X grad 6) = tr[grad(grad ¢ X grad 6)]
=eU*p, 10,k 8 -8 +€5p,; 0,1, 8- 8
=€k, 0,1 6} + €75 P,; 0,1, 6

— 'k 'k —
— EU (plji 1k+61 ¢,j Qiki_ 0

19.  Show that curl curl v = grad(div v) — grad?v

Letw = curl v = eifkvk,j g;. But curl w = €*#Yw,, 5 g,,. Upon inspection, we

find that w, = g,;€ vk,] so that

curl w = €*FY(g,.€%vy,,; )5 8a = 9yi€™FY €50y, 15 84



Now, it can be shown (see #20 below) that g, Y ek = g gPk — gk ghJ 5o
that,

curlw = (g% gP* — g** gF7 ) vy, jp 8o

= vﬁ’jﬁ g] — gﬁjva,jﬁ ga

= grad(div v) — grad?v
Also recall that the Laplacian (grad?®) of a scalar field ¢ is, grad*¢ = gij¢,ij. In
Cartesian coordinates, this becomes,

grad®p = gv¢,;; = 6;j .ij = o

as the unit (metric) tensor now degenerates to the Kronecker delta in this special
case. For a vector field, grad®v = gF/v%, 5 8,.

Also note that while grad is a vector operator, the Laplacian (grad?) is a scalar

operator.

20. Show that gyieaﬁye”k — g“fgﬁk — gakgﬁj
Note that



g g* g7 19,19 g9,.9% g,9Y

gyi(f“ﬁyeijk = Gyi gja g]ﬁ gj)/ =1 g/“ g]ﬁ g’
gkoc gkﬁ gky gka gk,B gky
s¢ 8 &)
g 9% g7 .
_ gJB o _5ﬁ gl® gl s gl® gjﬁ
Y gk,B gky 14 gka gky 14 gka gk,B
_ gfﬁ gja‘_ gja gjﬁ Lo gja gfﬁ _ gfa gjﬁ
gkﬁ gkoc gka gkﬁ gka gkﬁ gka gk,b’
= g“fgﬁk — gakgﬁf
21. Giventhat @(t) = |A(t)|, Show that ¢(t) = IA?t)I A
p? = A:A
Now,
dA dA dA

Lo =202 - B A A oa
ac T T ae “dt T dt




as inner product is commutative. We can therefore write that
do A dA A @
dt ¢ dt |AQ®)|

as required.
22.  Given a tensor field T, obtain the vector w = T1v
isT: (Vv) +v-divT
The gradient of w is the tensor, (Tjivj);k g' ® g*. Therefore, divergence of w

(the trace of the gradient) is the scalar sum , Tj;v/ ;. g + Tj;,; v/ g'*. Expanding,

we obtain,
div (TTv) = Tj;v7 1 g% + Tjii v/ g™
=T v/ + T/,
= (divT) - v+ tr(T grad v)
= (divT) -v+ T:(grad v)
Recall that scalar product of two vectors is commutative so that
div (T'v) = T:(gradv) + v-div T




23.  For a second-order tensor T define curl T = eijkTak,j g; ® g% show that for
any constant vector a, (curl T) a = curl (T a)
Express vector a in the invariant form with covariant components as a = aﬁgﬁ.
It follows that
(curl T) a = €Y*T,,,; (8; @ g1)a
= eV*Ty,; af (g ® 81)gp
= €V*Ty,; aPg;68
= €Y% (Ty),; 8:a”
= Gijk(Takaa);j 8i
The last equality resulting from the fact that vector a is a constant vector. Clearly,
(curl T) a = curl (TTa)
24.  For any two vectors u and v, show that curl (u @ v) = [(grad uw)v x]7 +

(curl v) ® u where v X is the skew tensor e*/ v, g; ® g;.

Recall that the curl of a tensor T is defined by curl T = €Y*T,,,; g8; ® g*.

Clearly therefore,



curl (u @ v) = €¥(uyvy),; 8 ® 8% = €% (ug,j vy + ugVi,; ) 8: @ 8*
= Eijkua»j vk 8 ® g¥ + Eijkuavkrj g ®g“
= (€7 vi i) ® (ua;8%) + (€7vk,; 81) @ (a8
= (e v g, @ 8;)(uap 8° @ 8%) + ("*vy,; 8:) ® (u8")
= —(vx)(grad w)T + (curlv) ® u = [(grad u)v x]T + (curlv) ® u
upon noting that the vector cross is a skew tensor.

25. Showthatcurl(u xv) =diviu@ v—v @ u)
The vector w = u X v = wy 8" = 4,5u*vPg¥ and curl w = €/*w,; g;.
Therefore,
curl (u x v) = €¥*w,,; g;

= eijkeka/;(u“vﬁ),j 8i
= (&i% - 55534) (uv”),; &
= (8L8) — 858%) (u,; vP +uvP ) )g;
= [ub,; v/ +ulv),— (W, v+ uvl; ) ]g;
= [('v’),;— (Wv'),; 8



=divlu@v—-vRu)

since diviu @ v) = (u'v/),, 8, ® g; - 8% = (u'v’),; 8.

26.  Given a scalar point function ¢ and a second-order tensor field T, show that
curl (¢T) = ¢p curl T + ((Vd)) ><)TT where [(V¢) X] is the skew tensor
e p,;8: Q 8k

curl (¢T) = € (¢Tor),j 8: @ g°
= €U5(¢,; Tox + PTorsj ) 8: D 8°
= Eijk¢,j Tor 81 ® g% + ¢EijkTakrj g ®g“
= (€7%¢,;8: ® 8x) (Taps” ® 8%) + PV Ty, 8: ® 8°
= ¢ curl T + ((Vp) X)TT

27.  For asecond-order tensor field T, show that div(curl T) = curl(div TT)
Define the second order tensor S as

curl T = EijkTak;j g, ®gt= S.iagi ® g“
The gradient of Sis S48, @ 8° ® g8F = €V*Ty,15 8: @ 8* @ gF
Clearly,




div(curl T) = €/*Toy,jp 8 @ 8% - 8F = €* Ty, jp 81 9*°
= eYkTF ;s 8 = curl(divTT)
28.  Show that if ¢ defined in the space spanned by orthonormal coordinates x*, then
Vi(xtp) = 2% + x'V?p .
By definition, V? (xi<p) = gjk(xicp),jk . Expanding, we have
g (x'p) = g7 (x' o +x'0s) , = g™ (S +x'0,;)

= g7 (8jpu + X' 10+ x'0 ji)

= g7 (6o + 8k +x'0 i)

=9%p+ 970, +x g p
When the coordinates are orthonormal, this becomes,

2 9o
(hi)zﬁ‘vafb

where we have suspended the summation rule and h; is the square root of the

appropriate metric tensor component.



29. In Cartesian coordinates, If the volume V' is enclosed by the surface S, the
position vector r = x'g; and n is the external unit normal to each surface element,

1 L
show that ngV(r - 1) - ndS equals the volume contained in V.
r-r=x'x/g;-g; =x'xg;;

By the Divergence Theorem,

jV(r 1) -ndS = jV- [V(r - r)]aV = jal[ak(xixjgij)] gt ghay
s v v
= jal[gij(xi»kxj +x'xl ) )] gl ghav
v
= jgijg”‘(c?z‘;xf +x'67), dV = ngikg”‘x‘}z dv = f25555 av
|74 |74

Vv
o[
%4

30. Forany Euclidean coordinate system, show thatdivu X v=vcurlu —ucurlv

Given the contravariant vector u* and v* with their associated vectors u; and v;,

the contravariant component of the above cross product is eijkujvk .The



required divergence is simply the contraction of the covariant x* derivative of this
quantity:

jkq,. — clkq,. . ko1, .

where we have treated the tensor ¥ as a constant under the covariant
derivative.

Cyclically rearranging the RHS we obtain,

(e”"ujvk)i = vy + uely ;= veMu ;4 uel oy

where we have used the anti-symmetric property of the tensor €%, The last
expression shows clearly that

divuXv=vcurlu—ucurlv

as required.

31. For a general tensor field T show that, curl(curlT) = [V?(trT) —
div(div T)]I + grad(divT) + (grad(div T))T — grad(grad (trT)) — V21T
curl T = €*'Tp;,s 8, ® gF
=S5%8, ® g’



curl § = eV*S%,. 8, @ 84

so that
curl § = curl(curl T) = €Y e*'Ty,5;8; ® 8,4
gicx gis git
=19’ g g7 Titsj 8 @ 8a
gka gks gkt

B g (gisgkt — gltghs) + gis(gltghe — gl ght) .
| +git(giegks — gisgke) ktrsj 8i @ 8a
= [97°T%sj= T 5 | (8% ® 8a) + [TY 5=~ 97°Ths; |(8° ® g0)
+ 97T %sj— 97°T% s | (8" ® 84)

[V2(tr T) — div(div T)]I + (grad(div T))T — grad(grad (trT))
+ (grad(div T)) — V2TT

32. When T is symmetric, show that tr (curl T) vanishes.

curl T = €/*Tgy,; 8; & g’



tr(curl T) = €V*Tgy,,; g; - g°
= EijkTﬁk,j 5lﬁ = EijkTik,j

which obviously vanishes on account of the symmetry and antisymmetry in i and

k. In this case,
curl(curl T)
= [V2(tr T) — div(div T)]1 — grad(grad (trT)) + 2(grad(div T))
— V2T

as (grad(div T))T = grad(div T) if the order of differentiation is immaterial and
T is symmetric.

33.  For a scalar function @ and a vector v* show that the divergence of the vector
vid is equalto, v -V® + @ divv
(viCID)i = CI)v",i + v"CD’i

Hence the result.



34. Show thatcurlu xv=(v-Vu) + (u-divv) — (v-divu) — (u-Vv)
Taking the associated (covariant) vector of the expression for the cross product in
the last example, it is straightforward to see that the LHS in indicial notation is,

elmi(eijkujvk)m

Expanding in the usual way, noting the relation between the alternating tensors

and the Kronecker deltas,
Imi ..k lml k
€ (eijkufv ) ki (uf A VE —ulpk m)

l m
= 6 (W v —uwvk ) = % 9

| (W v = uv* )
A
_(Slsm _ SLSmM\(1,] 1k

= (6j6k — 86; (W pv* —uwvk )
= §; 67w vk — 818 uIvk ) + 8467w vk — 8L uTvR

=ul ™ —u™m vt +utv™,, —u™l

Which is the result we seek in indicial notation.



35. . In Cartesian coordinates let x denote the magnitude of the position vectorr =

1 5 xix]-

x;€;. Show that (a) x,; = (b) X i~ (c) x; = (d) If U = - then U,

_61 i
x3’ il x’ U,; = 0and le( )

(a) x = ,/xl-xl-
0yxix;  04/xx; a(xl-xl) 1

ij — ij =

Xj
A ox;  0(x; xl) ox; 2 XX l[xi(sij + 248y = x
ax 0x XX
0 [(0./x;x; 9 /x; ax xia_x,- X0ij —%
(b) %1y ax,-< 0x; ) ax]( )_ (x)2  (x)?
1 XiXj
Cx @)

(c) xu_x ll_@zg_m

(d)U = i so that



Consequently,

d
3[ 0 , 2 ad . 3
3 0 xy (axj( x)>+xlaxj(x)
Uii = a_xj(U'i) T 0x; (x?’) x©
d(x3) ox .
3(—§5.. . X
X ( 511) +xl( ax axj) _x36ij +xi (3x2 Y]) _5U 3xix]
- x© - x© Y T x>
8;  3x;x; 3 3x?
U”=x3 x5 =x3+x5=0

v (©)= ()= (), =51 (56 )

3 .[_<1)xj] 3 xjxj=3 1 2



36.  For vectors u,v and w, show that (ux)(vx)(wx) =u®vxw)—(u-
V)W X.
The tensor (U X) = —€;,u”g! @ g™ similarly, (v x) = —e**Yv,g, ® gg and
(W )() — —Eijkwkgi ® g] Clearly,
(WX)(V X)W X) = —€pmne ™Y e u vy wi (8o ® g5)(8' © 8™)(8: D )
= —ePeppne umv,wy (g, ® gj)5ll?51m
= —e“lyelineijku"vywk(ga ® gj)
— —ElayElniEijkunUka(ga ® g])
= —(8%68) — 676} )T u"v,wi (8, ® 8;)
= —e" U vwi (g ® 8;) + €T wr,wi(g; ® g;)
=u® (vxw)—(u-v)w x]
37. Show that [u,v,w] = tr[(u X)(v X)(w X)]

In the above we have shown that (u X)(VX)(wX) =[u® (v X w) —
(u-v)w X]



Because the vector cross is traceless, the trace of [(u - v)w X] = 0. The trace of
the first term, u @ (v X w) is obviously the same as [u, v, w] which completes
the proof.

38. Show that (ux)(vx)= (u- v)1— u® v and that tr[(u X)(v x)] = 2(u -
\2)
(W X)(V X) = —€pmneP u"v, (8, ® gp)(g' @ g™
= —€mne P u"v, (8, ® 8™)6p = —€pmne’ Y Uy (g8, @ g™)
= (6785 — ono5umvy (8. ® &™)
= u"vn(8y ® ") — Uy (8, ¥ = (u- V)I-u®v
Obviously, the trace of this tensoris 2(u - v)

39. The position vector in the above example r = x;e;. Show that (a) divr = 3, (b)
div(r @ r) =4r,(c)divr = 3,and (d) gradr =1 and (e)curl r Q r) = —r X
gradr = x;,;e; Q e;
=0d;je;Qe =1
divr =x;;e;-e;
=0;j0;j =0;; =3.7rQr =xe; Q xje; = x;xje; Q e,



grad(r @ r) = (xixj),k e;Qe Qe = (xl-,k Xj + XXk )ei Re; ey
= (5ikxj + xi5jk)5jkei = (5ikxk + xi5jj)ei
= 4x;e; = 4r
curl(r @ r) = eaﬁy(xixy),g e, X e;

= Eaﬂy(xi»ﬁ Xy T XiXyp )ea ® e;
= €apy(Sipxy + x:8,p)eq @ e;
= €qiyXy€a @ €; + €qppxie, X e;
= —€EqyiXy€qy X e =-—-rX

40. Define the magnitude of tensor A as, |A| = /tr(AAT) Show that % = I%I

By definition, given a scalar «, the derivative of a scalar function of a tensor f(A)
is

of (A)

0
a—A!B:LI_I)I’(l)af(Aﬂ‘CZB)

for any arbitrary tensor B.
In the case of f(A) = |A],




O1A| :B = 1i 9 A+ aB
0A B al—r>r(l) aal ¢ |
|A + aB| = /tr(A + aB)(A + aB)T = /tr(AAT + aBAT + ¢ABT + a2BBT)

Note that everything under the root sign here is scalar and that the trace

operation is linear. Consequently, we can write,

0 ~ tr (BAD) +tr (ABT) + 2atr (BBT) 2A:B
lim —|A + aB| = lim =

a—0 0 a~02 [tr(AAT + aBAT + ¢ABT + 22BBT) 2VA:A
A
Al
So that,
d|A] A
O_A: B = W:B
or,
JJA] A
0A  |A|

as required since B is arbitrary.



613 6)) adet(S)
s

Clearly S¢€ = det(S) S~ = I;(S) S$~". Details of this for the contravariant
components of a tensor is presented below. Let

41. Show that = S°¢ the cofactor of S.

1 lk rst
det(S) = || =S5 =—¢Y SirSisSkt

3.
Differentiating wrt Saﬁ, we obtain,
oS 1 ik st 0S;, as,s 0Sk:
aSaB 8a ® gB = 3! o €€ aSaB S]sSkt + SI,T' aS Skt + SLTS]S aSa,B 8a ® gﬂ
1 ..
= §E”k€m [5515551‘35“ + Siy8/ 68 Siee + Sir5j55g5ﬂ 8a ® 8p
1 ajk -Bst
= 3 —T€777€ [SjsSkt + Sjsskt + SjsSkt]ga 03¢ gp
1
- iea]keﬁﬁsjssktga X gp = [S]*F g, ® 8p

Which is the cofactor of [Saﬁ] orS



42.  For a scalar variable a, if the tensor T =T(a) and T = %, Show that
i det(T) = det(T) tr(TT™1)
let A = TT 'sothat, T = AT. In component form, we have T]‘ = Ainij.

Therefore,

d . S : .
5 det(T) = (e‘fkT-lT-2T3) = e(TITPTE + T/ TP TR + T TATR)
= eUk(A1 PTR + THAZTMTS + T/ TP ASTY)

L [(AiTil + [43T?]+ [ aLT? )szTk + T3 (42T} | + AZT?

+[A2T3|) 12 + A1 (|41 | + 432 + A3T3)

All the boxed terms in the above equation vanish on account of the contraction of
a symmetric tensor with an antisymmetric one.

(For example, the first boxed term yields, V¥ A3 TZ T/ Ty}

Which is symmetric as well as antisymmetric in i and j. It therefore vanishes. The
same is true for all other such terms.)




d ..
L gem) = UH[(MTAIPTE + TH (AT + TATZ(A3TY)]

= AmeU*T T TS = tr(TT™1) det(T)

as required.

ddet(T)
0T

TC

43.  Without breaking down into components, establish the fact that

Start from Liouville’s Theorem, given a scalar parameter such that T = T(«),

%(det(T)):det(T) tr [(Z—DT—l [det(T) T-7]: (‘32)

By the simple rules of multiple derivative,

L (det(m) =[5 (derm): (5-)

— [det(T) T~ T]

Hence



a — — C
a—T(det(T)) =[det(T) T T] =T

44. [Gurtin 3.4.2a] If T is invertible, show that % (logdet(T)) =TT

d(logdet(T)) ddet(T)
ddet(T) 0T

_ ! TC = . det(T) T T
T det(T) det(T) ©

— T_T

9)
3T (log det(T)) =

45. [Gurtin 3.4.2a] If T is invertible, show that aiT (logdet(T™1)) = -TT

d(logdet(T™1)) odet(T 1) oT?
ddet(T-1) _ 9T-1 9T

01 det(T™1)) =
— (log det(T~1)) =

= Ger T T

= W det(T‘l) TT(—T_Z)

= —T_T




46.  Given that A is a constant tensor, Show that %tr(AS) = AT

In invariant components terms, let A = AYg; ® gjandletS =S,;8% ® gh.
AS = AUS,(g: ® 8;) (8" ® gF)
= AYS;5(g: @ &)
tr(AS) = AYS;z(g; - g°)
= ALJSJﬁ6lﬁ = AUS]l

0
55 T(AS) = 35wz tr(AS)g. @ 8p
_ 0AUS;

) ) G
= A58/ g, ® g = AVg; @ g = AT = = (A":S)

as required.



47.  Given that A and B are constant tensors, show that %tr(ASBT) = A'B

First observe that tr(ASBT) = tr(BTAS). If we write, C = BTA, it is obvious
from the above that %tr(CS) = CT. Therefore,

0
%tr(ASBT) = (BTA)T = A™B

48.  Given that A and B are constant tensors, show that %tr(ASTBT) = BTA
Observe that tr(ASTBT) = tr(BTAST) = tr[S(BTA)T] = tr[(BTA)TS]

[The transposition does not alter trace; neither does a cyclic permutation. Ensure
you understand why each equality here is true.] Consequently,

d d
5 r(ASTBT) = —- tr[(BTA)'S] = [(BTA)"]" = B"A



49. Let S be a symmetric and positive definite tensor and let I; (S), I, ($)and/;(S) be

the three principal invariants of § show that (a) 615;5) = 1 the identity tensor, (b)
aI,(S) . I3(S) -1
T 1,($)1 — S and (c) T I5(8)S
615;5) can be written in the invariant component form as,
JAOREIAS) .
——=——g 8¢
I aSiJ
Recall that I;(S) = tr(S) = S& hence
aI,(S) 0dI1,(S) . 08¢ .
— Y J=""%g. J
3S as) 8 X8 aSi,gl®g
= 6,678, ®g =6/g; g
=1
which is the identity tensor as expected.
d1,(S) .

5 ina similar way can be written in the invariant component form as,



al,(S) 1(311(5)
s 2 551

— - [sesg —spsi|ei @

[tr?(S) — tr(S?)]. Consequently,

N |-

where we have utilized the fact that I,(S) =

812(5) 1 a a ﬁ o ﬁ
J
55 =205 —[sesf —sgstlei® e
1 ,
= > [storsf + 6hslsg - shapst — siofsg|mi @
=[5 5ish +0is¢—5] -5/ |gi®@g/ = (5/s¢ - 5)gi ® ¢/
= 1,(S)1 - S

1
det(S) =S| =S = = —€KeStS, SicSke

Differentiating wrt Saﬁ, we obtain,

as
0S4

1 v | 0Sir a5;s 0S:
a®gﬁ =3,E € 05 S Skt+SlraS Skt+SlrS]saS ga®gﬁ

1 ..
= yelfker“ [5i0‘555j55kt + Sirajq(ssﬁskt + SirSjS(SI?(Stﬂ] g O 8p



1 ajk -Bst
= 56 € [SjSSkt + SjSSkt + SjsSkt]gaf ® g,B

1 .
- - cokess, S8, @ gy = (5178, @ g

Which is the cofactor of [Saﬁ] orS

50. For a tensor field &, The volume integral in the region Q) C &, fﬂ(grad E) dv =
faQE @ nds where n is the outward drawn normal to d( — the boundary of ). Show

that for a vector field

Replace £ by the vector field f we have,

j(gradf)dvz f @nds
Q Q)

Taking the trace of both sides and noting that both trace and the integral are

linear operations, therefore we have,



j tr(grad f) dv

Q

= j tr(f Q n) ds
G10)

51. Show that for a scalar function Hence the divergence
becomes, [, (grad ¢) dv = [,  ¢nds

Recall that for a vector field, that for a vector field

if we write, f = ¢a where a is an arbitrary constant vector, we have,

jﬂ(div[qba]) dv =j pa-nds = a-j ¢nds

20 20
For the LHS, note that, div[¢a] = tr(grad[¢a])

grad[pal = (¢pa'),;g8: Qg =a'p,;g8 g

theorem



The trace of which is,
N . _ . j _ P _
a'ep,igi-g =a'¢p,j6 =a'¢p,,=a-grad
For the arbitrary constant vector a, we therefore have that,

j(div[qba]) dv = a-jgradqb dv = a-j ¢nds
Q Q )

Q

jgrad ¢ dv=| ¢nds
Q 10



