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 The Finite Element Method is a technique for 

constructing approximate solutions in an element wise 

application of the variational method.

 We have seen in the previous work that a problem can, 

on its own have a variational formulation such that the 

differential equations we are trying to solve is the Euler-

Lagrange equations pertaining to the extremization of a 

functional. Here, we expand the scope and instead of 

starting with a variational formulation, we begin with a 

regular differential equation we want to solve.
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What is Finite Element Method?



 The question is: Can we still solve this equation even when it 
is not known to be the Euler-Lagrange equation of an 
extremization? The answer to this lies in the method of 
weighted residuals.

 Recall that we obtained a weak form of the variation 
problem by an ingenious transfer of a gradient (differentiation) 
away from the primary variable. This in turn yields the 
secondary variables – the variation of which, on the boundaries 
constitute the Natural boundary conditions.

 The essential boundary conditions are the kinematic 
specifications that must be met a-priori by the trial functions to 
be admissible. These trial functions are used to approximate 
the primary variables (or their derivatives) that we are seeking.
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Salient Problem



In this section, beginning with a second order ODE, we do not 

assume a variational formulation. Rather, we obtain an integral 

formulation using the method of weighted residuals. Consider 

the ODE:

−
𝑑

𝑑𝑥
𝑎 𝑥

𝑑

𝑑𝑥
𝑢 𝑥 + 𝑓 𝑥 = 0, 𝑥 ∈ 0, 𝐿

subject to: 𝑢 0 = 𝑢0, 𝑎
𝑑𝑢

𝑑𝑥
𝐿

= 𝑄𝐿
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2nd Order ODE



Select a set of approximation functions 𝜙𝑗 𝑥 such that, 

𝑈𝑁 𝑥 = 𝑐𝑗𝜙𝑗 𝑥 + 𝜙0 𝑥 𝑗 = 1,2,… , 𝑁

With the summation convention of Einstein as usual.

Substituting, we find 

𝑅 𝑥, 𝑐1, … , 𝑐𝑁 ≡
𝑑

𝑑𝑥
𝑎 𝑥

𝑑𝑈𝑁 𝑥

𝑑𝑥
− 𝑓 𝑥 ≠ 0

If it were zero, then we have an exact solution. 

Everything in the above equation is known apart from the 𝑁
parameters 𝑐1, … , 𝑐𝑁. We therefore need 𝑁 equations to find 
them. 
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Approximation Functions



PROBLEM: How do we get this number of equations? What 
strategies are available?

Several strategies can be employed to generate the number of 
equations we need to find the N unknown parameters. These 
are:

 Collocation 

 Least Squares

 Garlekin Weighted Residuals

 Other WRM
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Methods for Generating Solutions



Collocation. One straightforward method is the collocation method. We 

select 𝑁 points in the domain 0, 𝐿 and force equality such that,

𝑅 𝑥𝑖 , 𝑐1, … , 𝑐𝑁 = 0, 𝑖 = 1,2, … , 𝑁.

This is the method of collocation. It has the unique disadvantage of 

removing the degree of freedom we have in dividing the same domain 

into smaller elements later as this will mean the points of collocation 

begin to get closer and closer to each other. This is the same as 

selecting a weighting function such that

 
0

𝐿

𝑤𝑖 𝑥 𝑅 𝑥, 𝑐1, … , 𝑐𝑁 𝑑𝑥

Where the weighting function, 𝑤𝑖 𝑥 = 𝛿 𝑥 − 𝑥𝑖 . 𝛿 being the Dirac 

delta function.
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Collocation Method



1. Least Squares Method. We are using the same weighted 

functions as before. We now select 𝑤𝑖 𝑥 =
𝑑

𝑑𝑥
𝑎 𝑥

𝑑𝜙𝑖 𝑥

𝑑𝑥
where 𝜙𝑖 𝑥 are the same trial functions 

used to approximate the primary variable.

2. Garlekin Weighted Residuals. Here we choose 𝑤𝑖 𝑥 =

𝜙𝑖 𝑥 .

3. Other weighted residual methods. The selection of 𝑤𝑖 𝑥

other than the above functions have also been done. 
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Other Methods



In general, for any chosen set of 𝑤𝑖 𝑥 , the approximated 

integral,  
0

𝐿
𝑤𝑖 𝑥 𝑅 𝑥, 𝑐1, … , 𝑐𝑁 𝑑𝑥

Becomes,

 
0

𝐿

𝑤𝑖 𝑥
𝑑

𝑑𝑥
𝑎 𝑥

𝑑𝑈𝑁 𝑥

𝑑𝑥
− 𝑓 𝑥 𝑑𝑥

=  
0

𝐿

𝑎
𝑑𝑤𝑖

𝑑𝑥

𝑑𝑈𝑁

𝑑𝑥
𝑑𝑥 −  

0

𝐿

𝑤𝑖𝑓𝑑𝑥 − 𝑎𝑤𝑖

𝑑𝑈𝑁

𝑑𝑥
0

𝐿

=  
0

𝐿

𝑎
𝑑𝑤𝑖

𝑑𝑥

𝑑𝑈𝑁

𝑑𝑥
𝑑𝑥 −  

0

𝐿

𝑤𝑖𝑓𝑑𝑥 − 𝑤𝑖𝑄𝐿 + 𝑤𝑖𝑄0

where we have written 𝑄 ≡ 𝑎
𝑑𝑈𝑁

𝑑𝑥
.
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Weak Form



 Comparing the above development to the variational

formulation of the previous section, we can see immediately 

that if we take the weighting function as the variation in the 

primary variables, then the coefficient of this variation 

becomes the Natural Boundary conditions as before. 

 The above is a weak formulation of the differential equation 

as we have used integration by parts, as before to reduce the 

differentiation on the primary variable. 
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Natural Boundary Conditions



The variational formulation has an advantage in its 
demand for a lower differentiation order than the 
equations resulting from the balance laws resulting from 
the application of Newton/Cauchy laws of motion. 

 The construction of such weak forms, unfortunately, is not always 
possible for the specific problems under consideration.

 The trial functions to use in the variational approximation needs to 
satisfy certain conditions: completeness, linear independence, etc.

 They also are required to satisfy both the essential and boundary 
conditions of the problem.

 These requirements do not allow the variational methods to be 
viable especially when dealing with geometrically complex 
domains.
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Problems with Variational Methods



 Despite their apparent appeal, these methods are not even 

competitive with the regular, time-tested Finite difference 

schemes as general methods for the approximate solutions for 

differential equations.

 The Finite Element Method, FEM, overcomes these 

shortcomings by providing a systematic way of constructing the 

approximation functions. To become an effective 

computational method, it contains the following ingredients:
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Logic of the FEM



1. It is able to yield convergent solutions from a sound 
mathematical and physical basis and hence applicable to 
practical problems.

2. It is especially powerful in its adaptability to difficult 
geometrical boundaries. In fact, its provides immediate 
superiority to FD methods once the boundaries become 
difficult. Loading, displacement, etcs along irregular 
boundaries are no longer a serious issue.

3. It allows the increase of the degree of approximation and 
sensitivity of the solution by simply adding to the number of 
elements, nodes or order of approximation functions 
without the requirement of a complete reformulation of the 
problem.

4. It is easily implementable on a digital computer.
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Salient Points: FEM



In FEM, the domain is represented as a collection of simple domains –
called finite elements. It is therefore possible to systematically 
construct approximation functions in a variational or weighted 
integral approximation to the solution over each simple element. It 
goes with the 3 steps for construction:

1. Discretization
2. Approximation Functions. 
3. Assembly

This procedure offers two degrees of freedom in possible refinements 
for increased accuracy.
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Key Steps in the FEM Process



1. Discretization. No matter how complex the original domain 

is, it is discretized into many simple domains. 

2. Approximation Functions. These are no longer arbitrarily 

chosen. Instead, they are rooted in approximation and 

interpolation theory. They are specific and their choice 

depends on the level of element accuracy desired. The 

number of element types are usually few. 

3. Assembly. Assembly returns the problem from the discrete 

element space to the actual problem space by implementing 

the actual continuity relationships across connected 

elements. 
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Discretization, Approximation & 
Assembly



The number of elements to choose; The size reduction of each 

element space is achieved by increasing this number and 

consequently increasing the accuracy. 

The order of approximation function and increased local 

accuracy by increasing the number of nodes. Usually there are 

connecting nodes and there may also be local nodes that are 

inside the elements themselves depending on the order chosen 

for the approximation function.

The Interconnection of nodes has the consequence that we are 

not able to solve the the problem until the assembly stage.

Tuesday, May 5, 2015oafak@unilag.edu.ng, University of Lagos 16

Two Degrees



In specific terms,

 The sum, 𝑐𝑖𝜙𝑖(𝑥) of the undetermined coefficients and trial 
functions that we arbitrarily choose are replaced by 𝑢𝑖

𝑒𝜓𝑖
𝑒(𝑥) where 

the superscripts 𝑒 are referring to the element. The undetermined 𝑢𝑖
𝑒

are values of the primary variable at the particular location while 
𝜓𝑖

𝑒(𝑥) for each 𝑖 is an interpolation function.

 The choice of 𝑢𝑖
𝑒 over an arbitrary undetermined parameter offer 

the pragmatic advantage that the continuity condition across the 
boundary of the element can now be imposed automatically. 

 After assembly, the coefficients 𝑢𝑖 for each element that is, 𝑢𝑖
𝑒 are 

found so that the approximation equation is the residual integral 
minimized in the weighted residual sense.
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Coefficients & Trial Functions



The simplest interpolation fuctions we can choose from 
are due to Lagrange. The Lagrange Interpolating 
polynomial 𝑃 𝑥 of degree 𝑛 − 1 That passes through the 
points,

𝑥1, 𝑓(𝑥1 ), 𝑥2, 𝑓(𝑥2 , … , 𝑥𝑛, 𝑓(𝑥𝑛

it is given by 

𝑃 𝑥 =  

𝑗=1

𝑛

𝑃𝑗(𝑥) where 𝑃𝑗 𝑥 = 𝑓(𝑥𝑗)  

𝑘=1,𝑘≠𝑗

𝑛
𝑥 − 𝑥𝑘

𝑥𝑗 − 𝑥𝑘
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Interpolation Functions
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Lagrangian Functions



In a linear element in the domain 𝑥1, 𝑥2 we take the 

initial point as our local origin and assume the length of 

the element is ℎ = 𝑥2 − 𝑥1so that the point 𝑥1 = 0, and 

𝑥2 = ℎ. We can write the interpolating function over the 

element as, 

𝑃 𝑥 =  

𝑗=1

𝑛

𝑃𝑗 𝑥 =  

𝑖=1

2

𝑢𝑖
𝑒𝜓𝑖

𝑒 𝑥
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Linear Element Interpolation



Clearly,

𝑃1 𝑥 = 𝑢1
𝑒

𝑥 − 𝑥2

𝑥1 − 𝑥2
= 𝑢1

𝑒 1 −
𝑥

ℎ

and 𝑃2 𝑥 = 𝑢2
𝑒

𝑥 − 𝑥1

𝑥2 − 𝑥1
= 𝑢2

𝑒
𝑥

ℎ

so that, 𝜓1
𝑒 𝑥 = 1 −

𝑥

ℎ
and 𝜓2

𝑒 𝑥 =
𝑥

ℎ

And 𝑃 𝑥 = 𝑃1 𝑥 + 𝑃2 𝑥 → 𝑃 0 = 𝑢1
𝑒 and 𝑃 ℎ = 𝑢2

𝑒

producing the primary variable estimate at each node.
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Linear Interpolation



In the Mathematica Graph below, we have allowed ℎ =
2
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Linear Interpolation



For a second-order Lagrangian interpolation, we have 

three points in order as 𝑥1, 𝑥2, 𝑥3. Let ℎ = 𝑥3 − 𝑥1so that 

the point 𝑥1 = 0, and 𝑥2 = 𝛼ℎ and 𝑥3 = ℎ.

Clearly, 𝑥2 − 𝑥1 = 𝛼ℎ; 𝑥3 − 𝑥2 = 1 − 𝛼 ℎ and 𝑥3 −

𝑥1 = ℎ. Consequently,

𝑃1 𝑥 = 𝑢1
𝑒

𝑥 − 𝑥2 𝑥 − 𝑥3

𝑥1 − 𝑥2 𝑥1 − 𝑥3
= 𝑢1

𝑒 1 −
𝑥

ℎ
1 −

𝑥

𝛼ℎ
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Quadratic Interpolation



𝑃2 𝑥 = 𝑢2
𝑒

𝑥 − 𝑥1 𝑥 − 𝑥3

𝑥2 − 𝑥1 𝑥2 − 𝑥3

= 𝑢2
𝑒

𝑥 𝑥 − ℎ

𝛼ℎ ℎ 𝛼 − 1
=

𝑢2
𝑒

𝛼 1 − 𝛼

𝑥

ℎ
1 −

𝑥

ℎ

and 𝑃3 𝑥 = 𝑢3
𝑒

𝑥 − 𝑥1 𝑥 − 𝑥2

𝑥3 − 𝑥1 𝑥3 − 𝑥2

= 𝑢3
𝑒
𝑥 𝑥 − 𝛼ℎ

ℎ ℎ − 𝛼ℎ
=

𝑢3
𝑒

1 − 𝛼

𝑥

ℎ

𝑥

ℎ
− 𝛼

Tuesday, May 5, 2015oafak@unilag.edu.ng, University of Lagos 24

Quadratic Interpolation



It follows that 

𝑃 0 =  𝑖=1
2 𝑢𝑖

𝑒𝜓𝑖
𝑒 0 = 𝑢1

𝑒 1 − 0 1 − 0 = 𝑢1
𝑒, 

𝑃 𝛼ℎ =  𝑖=1
2 𝑢𝑖

𝑒𝜓𝑖
𝑒 𝛼ℎ =

𝑢2
𝑒

𝛼 1−𝛼

𝛼ℎ

ℎ
1 −

𝛼ℎ

ℎ
= 𝑢2

𝑒 and 

𝑃 ℎ =  𝑖=1
2 𝑢𝑖

𝑒𝜓𝑖
𝑒 𝛼ℎ =

𝑢3
𝑒

1−𝛼

ℎ

ℎ

ℎ

ℎ
− 𝛼 = 𝑢3

𝑒 .

So that, again, at each node, our interpolating function 

produces the value of the primary variable at the 

respective nodal point.
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Quadratic Interpolatioin



Where 𝜓1
𝑒 𝑥 = 1 −

𝑥

ℎ
1 −

𝑥

𝛼ℎ
, 

𝜓2
𝑒 𝑥 =

1

𝛼 1−𝛼

𝑥

ℎ
1 −

𝑥

ℎ
and 𝜓3

𝑒 =
1

1−𝛼

𝑥

ℎ

𝑥

ℎ
− 𝛼 .

If we set 𝛼 =
1

2
, we have,

𝜓1
𝑒 𝑥 = 1 −

𝑥

ℎ
1 −

2𝑥

ℎ
, 

𝜓2
𝑒 𝑥 =

4𝑥

ℎ
1 −

𝑥

ℎ
and 𝜓3

𝑒 =
𝑥

ℎ

2𝑥

ℎ
− 1
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Quadratic Interpolatioin
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Quadratic Interpolation



The three quadratic Interpolation functions assuming a 

size ℎ = 2, for arbitrary location of the internal node are:

𝜓1
𝑒 𝑥 = 1 −

𝑥

2
1 −

𝑥

2𝛼
,

𝜓2
𝑒 𝑥 =

1

𝛼 𝛼 − 1

𝑥

2
1 −

𝑥

2

and 𝜓3
𝑒 𝑥 =

1

1 − 𝛼

𝑥

2

𝑥

2
− 𝛼

The figure below shows the relative weights at each point 

for values of 𝛼 = 0.2, 0.4, 0.6 and 0.8.
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General Quadratics
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Discrete Values



We now formulate the weighted residual equations on the 

elements.

 The weighted residual integral of interest, from Slide 2.09, is,

𝐽 =  
0

𝐿

𝑎
𝑑𝑤

𝑑𝑥

𝑑𝑢

𝑑𝑥
+ 𝑐𝑤𝑢 − 𝑤𝑓 𝑑𝑥 − 𝑤(𝑥𝐿)𝑄𝐿 + 𝑤(𝑥0)𝑄0

where we have written 𝑄 ≡ 𝑎
𝑑𝑢

𝑑𝑥
is the secondary varuable.

The interval 0, 𝐿 is now made of elements 𝑒 = 1,2, … , 𝑛

occupying the intervals 𝑥1
𝑒 , 𝑥2

𝑒 for each value of the element. 

Tuesday, May 5, 2015oafak@unilag.edu.ng, University of Lagos 30

The Element Model.



Hence, we can write,

𝐽 =  
𝑥1
𝑒

𝑥2
𝑒

𝑎
𝑑𝑤

𝑑𝑥

𝑑𝑢

𝑑𝑥
+ 𝑐𝑤𝑢 − 𝑤𝑓 𝑑𝑥 − 𝑤 𝑥2

𝑒 𝑄2 + 𝑤 𝑥1
𝑒 𝑄1

For the two-node linear element lying between 𝑥1
𝑒 , 𝑥2

𝑒 . In 

general, an element can have 𝑛 −nodes. The above element 

formulation will therefore be,

 

𝑖=1

𝑛−1

 
𝑥𝑖
𝑒

𝑥𝑖+1
𝑒

𝑎
𝑑𝑤

𝑑𝑥

𝑑𝑢

𝑑𝑥
+ 𝑐𝑤𝑢 − 𝑤𝑓 𝑑𝑥 − 𝑤 𝑥𝑖+1

𝑒 𝑄𝑖+1
𝑒 + 𝑤(𝑥𝑖

𝑒)𝑄𝑖
𝑒
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The Element Model…



Evaluations of Conditions at nodes

⦿ 𝑥1
𝑒+ …𝑥2

𝑒− ⦿ 𝑥2
𝑒+ …𝑥3

𝑒− ⦿ 𝑥3
𝑒+ ………  𝑥𝑛−1

𝑒− ⦿ 𝑥𝑛−1
𝑒+ …𝑥𝑛

𝑒− ⦿
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Interior & Boundary Nodes



=  
𝑥1
𝑒

𝑥𝑛
𝑒

𝑎
𝑑𝑤

𝑑𝑥

𝑑𝑢

𝑑𝑥
+ 𝑐𝑤𝑢 − 𝑤𝑓 𝑑𝑥 − 𝑤 𝑥2

𝑒− 𝑄2
𝑒− + 𝑤 𝑥1

𝑒+ 𝑄1
𝑒+ − 𝑤 𝑥3

𝑒− 𝑄3
𝑒−

+ 𝑤(𝑥2
𝑒+)𝑄2

𝑒+ −⋅⋅⋅ −𝑤 𝑥𝑛
𝑒− 𝑄𝑛

𝑒− + 𝑤(𝑥𝑛−1
𝑒+ )𝑄𝑛−1

𝑒+

=  
𝑥1
𝑒

𝑥𝑛
𝑒

𝑎
𝑑𝑤

𝑑𝑥

𝑑𝑢

𝑑𝑥
+ 𝑐𝑤𝑢 − 𝑤𝑓 𝑑𝑥 − −𝑤 𝑥1

𝑒+ 𝑄1
𝑒+

− 𝑤 𝑥2
𝑒− 𝑄2

𝑒− − 𝑤 𝑥2
𝑒+ 𝑄2

𝑒+ − 𝑤 𝑥3
𝑒− 𝑄3

𝑒− − 𝑤 𝑥3
𝑒+ 𝑄3

𝑒+ −⋅⋅

⋅ − 𝑤(𝑥𝑛−1
𝑒− )𝑄𝑛−1

𝑒− − 𝑤(𝑥𝑛−1
𝑒+ )𝑄𝑛−1

𝑒+ − 𝑤 𝑥𝑛
𝑒− 𝑄𝑛

𝑒−

=  
𝑥1
𝑒

𝑥𝑛
𝑒

𝑎
𝑑𝑤

𝑑𝑥

𝑑𝑢

𝑑𝑥
+ 𝑐𝑤𝑢 − 𝑤𝑓 𝑑𝑥 − 𝑤 𝑥1

𝑒 𝑄1
𝑒 − 𝑤 𝑥2

𝑒 𝑄2
𝑒 − 𝑤 𝑥3

𝑒 𝑄3
𝑒 −⋅⋅

⋅ −𝑤 𝑥𝑛−1
𝑒 𝑄𝑛−1

𝑒 − 𝑤 𝑥𝑛
𝑒 𝑄𝑛

𝑒 = 0
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The Element Model…



 
𝑥1
𝑒

𝑥𝑛
𝑒

𝑎
𝑑𝑤

𝑑𝑥

𝑑𝑢

𝑑𝑥
+ 𝑐𝑤𝑢 − 𝑤𝑓 𝑑𝑥 − 𝑤 𝑥1

𝑒 𝑄1
𝑒 − 𝑤 𝑥2

𝑒 𝑄2
𝑒

− 𝑤 𝑥3
𝑒 𝑄3

𝑒 −⋅⋅⋅ −𝑤 𝑥𝑛−1
𝑒 𝑄𝑛−1

𝑒 − 𝑤 𝑥𝑛
𝑒 𝑄𝑛

𝑒 = 0

where for each nodal condition, we have written,

𝑤 𝑥1
𝑒 𝑄1

𝑒 = −𝑤 𝑥1
𝑒+ 𝑄1

𝑒+

𝑤 𝑥2
𝑒 𝑄2

𝑒 = 𝑤 𝑥2
𝑒− 𝑄2

𝑒− − 𝑤 𝑥2
𝑒+ 𝑄2

𝑒+

𝑤 𝑥3
𝑒 𝑄3

𝑒 = 𝑤 𝑥3
𝑒− 𝑄3

𝑒− − 𝑤 𝑥3
𝑒+ 𝑄3

𝑒+

𝑤 𝑥𝑖
𝑒 𝑄𝑖

𝑒 = 𝑤 𝑥𝑖
𝑒− 𝑄𝑖

𝑒− − 𝑤 𝑥𝑖
𝑒+ 𝑄𝑖

𝑒+

𝑤 𝑥𝑛−1
𝑒 𝑄𝑛−1

𝑒 = 𝑤 𝑥𝑛−1
𝑒− 𝑄𝑛−1

𝑒− − 𝑤 𝑥𝑛−1
𝑒+ 𝑄𝑛−1

𝑒+

𝑤 𝑥𝑛
𝑒 𝑄𝑛

𝑒 = 𝑤 𝑥𝑛
𝑒− 𝑄𝑛

𝑒−
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The 1-D Element



Evaluations of Conditions at nodes

⦿ 𝑥1
𝑒+ …𝑥2

𝑒− ⦿ 𝑥2
𝑒+ …𝑥3

𝑒− ⦿ 𝑥3
𝑒+ ………  𝑥𝑛−1

𝑒− ⦿ 𝑥𝑛−1
𝑒+ …𝑥𝑛

𝑒− ⦿
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Interior & Boundary Nodes



For 𝑛 −nodes, the appropriate interpolation function is the 𝑛 −
1𝑡ℎ polynomial. There will be n of these equations. One for each 
weight. We write the first and typical ones:

 
𝑥𝑎

𝑥𝑏

 𝑎
𝑑𝜓1

𝑒

𝑑𝑥
 

𝑗=1

𝑛

𝑢𝑗
𝑒
𝑑𝜓𝑗

𝑒

𝑑𝑥
+ 𝑐𝜓1

𝑒  

𝑗=1

𝑛

𝑢𝑗
𝑒 𝜓𝑗

𝑒(𝑥)
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The red subscript showing the only thing that now varies from one variable to another. 
Consequently, the typical equation for the ith weight is,

 
𝑥𝑎

𝑥𝑏

𝑎
𝑑𝜓𝑖

𝑒

𝑑𝑥
 

𝑗=1

𝑛

𝑢𝑗
𝑒
𝑑𝜓𝑗

𝑒

𝑑𝑥
+ 𝑐𝜓𝑖

𝑒  

𝑗=1

𝑛

𝑢𝑗
𝑒 𝜓𝑗

𝑒(𝑥) + 𝜓𝑖
𝑒𝑓(𝑥) 𝑑𝑥 −  

𝑗=1

𝑛

𝜓𝑖
𝑒 𝑥𝑗

𝑒 𝑄𝑗
𝑒

= 0

and the nth equation is,

 
𝑥𝑎

𝑥𝑏

𝑎
𝑑𝜓𝑛

𝑒

𝑑𝑥
 

𝑗=1

𝑛

𝑢𝑗
𝑒
𝑑𝜓𝑗

𝑒

𝑑𝑥
+ 𝑐𝜓𝑛

𝑒  

𝑗=1

𝑛

𝑢𝑗
𝑒 𝜓𝑗

𝑒(𝑥) + 𝜓𝑛
𝑒𝑓(𝑥) 𝑑𝑥 −  

𝑗=1

𝑛

𝜓𝑛
𝑒 𝑥𝑗

𝑒 𝑄𝑗
𝑒

= 0
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Typical Weight on a Node



Which we can write as,

 

𝑗=1

𝑛

𝐾𝑖𝑗
𝑒 𝑢𝑗

𝑒 − 𝑓𝑖
𝑒 − 𝑄𝑖

𝑒 = 0, 𝑖 = 1,2, … , 𝑛

where 𝐾𝑖𝑗
𝑒 = 𝐵𝑒 𝜓𝑖

𝑒 , 𝜓𝑗
𝑒 =  𝑥𝑎

𝑥𝑏 𝑎
𝑑𝜓𝑖

𝑒

𝑑𝑥

𝑑𝜓𝑗
𝑒

𝑑𝑥
+ 𝑐𝜓𝑖

𝑒(𝑥)𝜓𝑗
𝑒(𝑥) 𝑑𝑥

𝑓𝑖
𝑒 =  

𝑥𝑎

𝑥𝑏

𝜓𝑖
𝑒𝑓(𝑥)𝑑𝑥

and the interpolation property allows us to write 

 

𝑗=1

𝑛

𝜓𝑖
𝑒 𝑥𝑗

𝑒 𝑄𝑗
𝑒 = 𝑄𝑖

𝑒

We can now proceed to derive the linear and quadratic elements in 1-
D as special cases of this general formula.
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For the linear element, let ℎ𝑒 = 𝑥𝑏 − 𝑥𝑎, we have from Slide 2.21 
that,

𝜓1
𝑒 𝑥 = 1 −

 𝑥

ℎ𝑒
and 𝜓2

𝑒 𝑥 =
 𝑥

ℎ𝑒

Where we have chosen new coordinates, treating the beginning of 
the node as the local origin, so that,

𝑥 = 𝑥1
𝑒 +  𝑥 = 𝑥𝑎 +  𝑥

Linearity of this relationship means that,

𝑑𝑥 = 𝑑  𝑥 and 
𝑑𝜓𝑖

𝑒

𝑑𝑥
=

𝑑𝜓𝑖
𝑒

𝑑  𝑥
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Linear 1-D Elements



A direct integration of the integral, 

𝐾𝑖𝑗
𝑒 = 𝐵𝑒 𝜓𝑖

𝑒 , 𝜓𝑗
𝑒 =  

𝑥𝑎

𝑥𝑏

𝑎
𝑑𝜓𝑖

𝑒

𝑑𝑥

𝑑𝜓𝑗
𝑒

𝑑𝑥
+ 𝑐𝜓𝑖

𝑒(𝑥)𝜓𝑗
𝑒(𝑥) 𝑑𝑥

Can be found in the Mathematica notebook, http://1drv.ms/1HMT3c8

Clearly, 

𝐾𝑒 =
𝑎𝑒

ℎ𝑒

1 −1
−1 1

+
𝑐𝑒ℎ𝑒

6
2 1
1 2

and 

𝑓𝑒 =
𝑓𝑒ℎ𝑒

2
1
1

With the Mathematica-based formulation, it is trivial to change the kind 
of function 𝑎(𝑥) can be. The results follow immediately. 
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Linear Interpolation

http://1drv.ms/1HMT3c8


Homework: Use a linear and a trigonometric function for 

the input data 𝑎(𝑥)
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Element Computation Code



We proceed as before. The quadratic 
interpolation functions were derived in Slide 

2.26. If we set 𝛼 =
1

2
, we have,

𝜓1
𝑒 𝑥 = 1 −

𝑥

ℎ
1 −

2𝑥

ℎ
, 

𝜓2
𝑒 𝑥 =

4𝑥

ℎ
1 −

𝑥

ℎ
and 𝜓3

𝑒 =
𝑥

ℎ

2𝑥

ℎ
− 1
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1-D Quadratic Element
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Derivation Program
The element coefficient matrix is therefore obtained 

by a direct integration of the integral, 

𝐾𝑖𝑗
𝑒 = 𝐵𝑒 𝜓𝑖

𝑒, 𝜓𝑗
𝑒

=  
𝑥𝑎

𝑥𝑏

𝑎
𝑑𝜓𝑖

𝑒

𝑑𝑥

𝑑𝜓𝑗
𝑒

𝑑𝑥
+ 𝑐𝜓𝑖

𝑒(𝑥)𝜓𝑗
𝑒(𝑥) 𝑑𝑥

Can be found in the Mathematica notebook, 

Clearly,

𝐾𝑒 =
𝑎𝑒

3ℎ𝑒

7 −8 1
−8 16 −8
1 −8 7

+
𝑐𝑒ℎ𝑒

30

4 2 −1
2 16 2
−1 2 4

And

𝑓𝑒 =
𝑓𝑒ℎ𝑒

6

1
4
1



 Note that these elements are derived on very restrictive 

conditions. This includes the symmetric element used in 

the quadratic case, that functions 𝑎(𝑥), 𝑓(𝑥) are constants. 

We are not bound by these constraints as we have the 

power of the Symbolic processor to compute these 

integrals and sums as we have shown here.
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 The next stage is to connect the elements. This is 
necessary to reduce the number of unknowns and 
apply the continuity conditions that are quite easy to 
do and is in fact one of the important advantages of 
using the FEA approach.

 It is essentially a reversal of the discretization process. 
It is also a necessary step before the solution of the 
derived equations can be attempted.

Tuesday, May 5, 2015oafak@unilag.edu.ng, University of Lagos 45

Connecting the Elements



 The most basic issue in assembly is to recognize a 
global naming system that now translates the 
identities of the nodes from the local numbering we 
have used into a consistent global identification 
system.

 This is relatively straightforward in the case of one-
dimensional elements because, for each element, we 
are dealing with two neighbours at most. 

 It is also true that once this step is fully understood in 
the 1-D case, it is also a straightforward matter to 
extend it to higher dimensions when we will deal with 
more neighbours and have more complications.
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Local and Global Identification



⦿ 𝑥1
1 …𝑥2

1 ⦿ 𝑥1
2 …𝑥2

2 ⦿

𝑈1 𝑈2 𝑈3 𝐺𝑙𝑜𝑏𝑎𝑙

⦿ 𝑢1
1 …𝑢2

1 ⦿ 𝑢1
2 …𝑢2

2 ⦿

In the simplest case, we consider two linear elements so 

that we have three nodes. Each element has two nodes 

and they share one node as shown above.
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Simplest Case



 Each element equation is first order and produces 
two equations: One for each node. For element 1, we 
have local variables 𝑢1

1 and 𝑢2
1. These are the same as 

the global variables 𝑈1and 𝑈2. 

 For any element e, at node 1 or 2 we can write:

 

𝑗=1

2

𝐾𝑖𝑗
𝑒𝑢𝑗

𝑒 = 𝐾𝑖1
𝑒 𝑢1

𝑒 + 𝐾𝑖2
𝑒 𝑢2

𝑒 = 𝑓𝑖
𝑒 + 𝑄𝑖

𝑒
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Globalization



Consequently, for element 1 we have 
𝐾11

1 𝑢1
1 + 𝐾12

1 𝑢2
1 = 𝑓1

1 + 𝑄1
1

𝐾21
1 𝑢1

1 + 𝐾22
1 𝑢2

1 = 𝑓2
1 + 𝑄2

1

And for element 2, the terms remain unchanged except 
for the element superscripts:

𝐾11
2 𝑢1

2 + 𝐾12
2 𝑢2

2 = 𝑓1
2 + 𝑄1

2

𝐾21
2 𝑢1

2 + 𝐾22
2 𝑢2

2 = 𝑓2
2 + 𝑄2

2
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Element Equations



 Apply the continuity which is simply regognizing the 
global numbering for each nodal variable, we have,

𝐾11
1 𝑈1 + 𝐾12

1 𝑈2 = 𝑓1
1 + 𝑄1

1

𝐾21
1 𝑈1 + 𝐾22

1 𝑈2 = 𝑓2
1 + 𝑄2

1

And for element 2, the terms remain unchanged except 
for the element superscripts:

𝐾11
2 𝑈2 + 𝐾12

2 𝑈3 = 𝑓1
2 + 𝑄1

2

𝐾21
2 𝑈2 + 𝐾22

2 𝑈3 = 𝑓2
2 + 𝑄2

2
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Continuity



 We can add the second equation of element 1 to the 
first of element 2 and obtain,

𝐾11
1 𝑈1 + 𝐾12

1 𝑈2 = 𝑓1
1 + 𝑄1

1

𝐾21
1 𝑈1 + 𝐾22

1 𝑈2 + 𝐾11
2 𝑈2 + 𝐾12

2 𝑈3 = 𝑓2
1 + 𝑄2

1 + 𝑓1
2 + 𝑄1

2

𝐾21
2 𝑈2 + 𝐾22

2 𝑈3 = 𝑓2
2 + 𝑄2

2

Or,

𝐾11
1 𝐾12

1 0

𝐾21
1 𝐾22

1 + 𝐾11
2 𝐾12

2

0 𝐾21
2 𝐾22

2

𝑈1

𝑈2

𝑈3

=

𝑓1
1

𝑓2
1 + 𝑓1

2

𝑓2
2

+

𝑄1
1

𝑄2
1 + 𝑄1

2

𝑄2
2
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Condensing



 A Simple inspection extends this to the case of N 
linear elements as can be seen on page 129 in the 
text.
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N-Element Case


